TY - JOUR
T1 - Dynamics of a trefoil knotted vortex
AU - Yao, Jie
AU - Yang, Yue
AU - Hussain, Fazle
N1 - Publisher Copyright:
© 2021 The Author(s). Published by Cambridge University Press.
PY - 2021
Y1 - 2021
N2 - A slender trefoil knotted vortex is studied using direct numerical simulation of the Navier-Stokes equations for vortex Reynolds numbers (, circulation/viscosity) up to 12 000. For initially zero twist , neither the writhe nor the global helicity is conserved. Initially slowly decreases, then suddenly drops during reconnection and becomes almost constant thence; its evolution is almost independent. Before reconnection, also gradually decreases but sharply increases during reconnection. The evolution of after reconnection strongly depends on. While steadily decreasing at low, significantly increases before eventually decaying at high. Flow visualization, helicity decomposition and helical wave decomposition reveal that significant amounts of positive and negative twist helicities are simultaneously generated before and during reconnection. Also, the small leading and large trailing rings resulting from asymmetric reconnection have respectively negative and positive twists, which then decay differently due to different initial values, geometries and mutual induction. In particular, at high, the twist in the small ring, under stretching by the large trailing ring, decays much faster and even switches sign to become positive by the writhe-to-twist conversion - the main reason for the 'transient growth' of. Simulations with non-zero initial twists (and) reveal that the overall dynamics is similar to the case. Hence, the evolution of the trefoil knotted vortex is mainly governed by, not, although the latter is found to play an essential role in enstrophy growth as well as energy cascade.
AB - A slender trefoil knotted vortex is studied using direct numerical simulation of the Navier-Stokes equations for vortex Reynolds numbers (, circulation/viscosity) up to 12 000. For initially zero twist , neither the writhe nor the global helicity is conserved. Initially slowly decreases, then suddenly drops during reconnection and becomes almost constant thence; its evolution is almost independent. Before reconnection, also gradually decreases but sharply increases during reconnection. The evolution of after reconnection strongly depends on. While steadily decreasing at low, significantly increases before eventually decaying at high. Flow visualization, helicity decomposition and helical wave decomposition reveal that significant amounts of positive and negative twist helicities are simultaneously generated before and during reconnection. Also, the small leading and large trailing rings resulting from asymmetric reconnection have respectively negative and positive twists, which then decay differently due to different initial values, geometries and mutual induction. In particular, at high, the twist in the small ring, under stretching by the large trailing ring, decays much faster and even switches sign to become positive by the writhe-to-twist conversion - the main reason for the 'transient growth' of. Simulations with non-zero initial twists (and) reveal that the overall dynamics is similar to the case. Hence, the evolution of the trefoil knotted vortex is mainly governed by, not, although the latter is found to play an essential role in enstrophy growth as well as energy cascade.
KW - vortex dynamics
KW - vortex interactions
UR - http://www.scopus.com/inward/record.url?scp=85110140336&partnerID=8YFLogxK
U2 - 10.1017/jfm.2021.580
DO - 10.1017/jfm.2021.580
M3 - Article
AN - SCOPUS:85110140336
SN - 0022-1120
VL - 923
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
M1 - A19
ER -