Dynamic MRI Reconstruction Using Tensor-SVD

Jianhang Ai, Shuli Ma, Huiqian Du, Liping Fang

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

In this paper we propose to reconstruct dynamic magnetic resonance images from highly sparse sampling k-t space data by enhancing the low rankness and sparsity simultaneously. We introduce Tensor Singular Value Decomposition (t-SVD) instead of matrix SVD to maintain the structure of dynamic MR images. The reconstruction is casted into an optimization framework where the tensor nuclear norm (TNN) minimization is used to enhance the low rankness and the l1 norm minimization of tensor gradient along each mode is applied to enhance the sparsity. In addition, we utilize alternating direction method of multipliers (ADMM) algorithm to efficiently solve the proposed optimization problem. Experimental results demonstrate the superior performance of the proposed method.

源语言英语
主期刊名2018 14th IEEE International Conference on Signal Processing Proceedings, ICSP 2018
编辑Yuan Baozong, Ruan Qiuqi, Zhao Yao, An Gaoyun
出版商Institute of Electrical and Electronics Engineers Inc.
1114-1118
页数5
ISBN(电子版)9781538646724
DOI
出版状态已出版 - 2 2月 2019
活动14th IEEE International Conference on Signal Processing, ICSP 2018 - Beijing, 中国
期限: 12 8月 201816 8月 2018

出版系列

姓名International Conference on Signal Processing Proceedings, ICSP
2018-August

会议

会议14th IEEE International Conference on Signal Processing, ICSP 2018
国家/地区中国
Beijing
时期12/08/1816/08/18

指纹

探究 'Dynamic MRI Reconstruction Using Tensor-SVD' 的科研主题。它们共同构成独一无二的指纹。

引用此