Dynamic Emotion Understanding Based on Two-Layer Fuzzy Fuzzy Support Vector Regression-Takagi-Sugeno Model

Luefeng Chen*, Min Wu, Witold Pedrycz, Kaoru Hirota

*此作品的通讯作者

科研成果: 书/报告/会议事项章节章节同行评审

摘要

Two-layer Fuzzy SVR-TS Model is proposed for emotion understanding in human-robot interaction, where the real-time dynamic emotion is recognized according to facial expression, and emotional intention understanding is obtained mainly based on human emotions and identification information. It aims to make robots capable of recognizing and understanding human emotions, in such a way that make humanrobot interaction run smoothly.

源语言英语
主期刊名Studies in Computational Intelligence
出版商Springer Science and Business Media Deutschland GmbH
161-182
页数22
DOI
出版状态已出版 - 2021
已对外发布

出版系列

姓名Studies in Computational Intelligence
926
ISSN(印刷版)1860-949X
ISSN(电子版)1860-9503

指纹

探究 'Dynamic Emotion Understanding Based on Two-Layer Fuzzy Fuzzy Support Vector Regression-Takagi-Sugeno Model' 的科研主题。它们共同构成独一无二的指纹。

引用此

Chen, L., Wu, M., Pedrycz, W., & Hirota, K. (2021). Dynamic Emotion Understanding Based on Two-Layer Fuzzy Fuzzy Support Vector Regression-Takagi-Sugeno Model. 在 Studies in Computational Intelligence (页码 161-182). (Studies in Computational Intelligence; 卷 926). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-61577-2_10