@inproceedings{d362f86cb34d4a3587d5b3d1ae526d24,
title = "Dynamic Attention Aggregation with BERT for Neural Machine Translation",
abstract = "The recently proposed BERT has demonstrated great power in various natural language processing tasks. However, the model does not perform effectively on cross-lingual tasks, especially on machine translation. In this work, we propose three methods to introduce pre-trained BERT into neural machine translation without fine-tuning. Our approach consists of a) a linear-attention aggregation that leverages a parameter matrix to capture the key knowledge of BERT, b) a self-attention aggregation which aims to learn what is vital for input and output, and c) a switch-gate aggregation to dynamically control the balance of the information flowing from the pre-trained BERT or the NMT model. We conduct experiments on several translation benchmarks and substantially improve over 2 BELU points on the IWSLT'14 English - German task with switch-gate aggregation method compared to a strong baseline, while our proposed model also performs remarkably on the other tasks.",
author = "Zhang, {Jia Rui} and Li, {Hong Zheng} and Shi, {Shu Min} and Huang, {He Yan} and Yue Hu and Wei, {Xiang Peng}",
note = "Publisher Copyright: {\textcopyright} 2020 IEEE.; 2020 International Joint Conference on Neural Networks, IJCNN 2020 ; Conference date: 19-07-2020 Through 24-07-2020",
year = "2020",
month = jul,
doi = "10.1109/IJCNN48605.2020.9206990",
language = "English",
series = "Proceedings of the International Joint Conference on Neural Networks",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "2020 International Joint Conference on Neural Networks, IJCNN 2020 - Proceedings",
address = "United States",
}