摘要
ZnO/ZnMgO core/shell nanorod arrays with a large surface-to-volume ratio and negligible lattice mismatch are considered as a promising candidate applied in ultraviolet photodetection. Herein, ZnO/ZnMgO core/shell nanorod arrays were fabricated by using simple and facile hydrothermal and radio frequency magnetron sputtering methods and applied in the dual-ultraviolet wavelength photodetector successfully. The morphology and crystallization show the formation of core/shell nanorod arrays and typical hexagonal wurtzite structure. The fabricated device demonstrates significant ohmic contact and has a high photo-to-dark current ratio and a fast rise/decay time under the 254 nm and 365 nm illumination at 5 V bias. ZnO/ZnMgO core/shell nanostructure could bring about the speedy separation of photogenerated electron-hole pairs and suppress the recombination of photogenerated carriers because of the formation of built-in electric field in the interfacial region of core/shell structure and the passivated surface states of bare ZnO nanorods. Therefore, our work offers a method to fabricate high performance dual-ultraviolet wavelength photodetector for the potential application in future ultraviolet detection.
源语言 | 英语 |
---|---|
文章编号 | 157917 |
期刊 | Journal of Alloys and Compounds |
卷 | 860 |
DOI | |
出版状态 | 已出版 - 15 4月 2021 |