Document boltzmann machines for information retrieval

Qian Yu, Peng Zhang*, Yuexian Hou, Dawei Song, Jun Wang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 2
see details

摘要

Probabilistic language modelling has been widely used in information retrieval. It estimates document models under the multinomial distribution assumption, and uses query likelihood to rank documents. In this paper, we aim to generalize this distribution assumption by exploring the use of fully-observable Boltzmann Machines (BMs) for document modelling. BM is a stochastic recurrent network and is able to model the distribution of multi-dimensional variables. It yields a kind of Boltzmann distribution which is more general than multinomial distribution. We propose a Document Boltzmann Machine (DBM) that can naturally capture the intrinsic connections among terms and estimate query likelihood efficiently. We formally prove that under certain conditions (with 1-order parameters learnt only), DBM subsumes the traditional document language model. Its relations to other graphical models in IR, e.g., MRF model, are also discussed. Our experiments on the document reranking demonstrate the potential of the proposed DBM.

源语言英语
主期刊名Advances in Information Retrieval - 37th European Conference on IR Research, ECIR 2015, Proceedings
编辑Allan Hanbury, Andreas Rauber, Gabriella Kazai, Norbert Fuhr
出版商Springer Verlag
666-671
页数6
ISBN(电子版)9783319163536
DOI
出版状态已出版 - 2015
已对外发布
活动37th European Conference on Information Retrieval Research, ECIR 2015 - Vienna, 奥地利
期限: 29 3月 20152 4月 2015

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9022
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议37th European Conference on Information Retrieval Research, ECIR 2015
国家/地区奥地利
Vienna,
时期29/03/152/04/15

指纹

探究 'Document boltzmann machines for information retrieval' 的科研主题。它们共同构成独一无二的指纹。

引用此

Yu, Q., Zhang, P., Hou, Y., Song, D., & Wang, J. (2015). Document boltzmann machines for information retrieval. 在 A. Hanbury, A. Rauber, G. Kazai, & N. Fuhr (编辑), Advances in Information Retrieval - 37th European Conference on IR Research, ECIR 2015, Proceedings (页码 666-671). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 9022). Springer Verlag. https://doi.org/10.1007/978-3-319-16354-3_73