TY - JOUR
T1 - Distributed Nash Equilibrium Seeking for Multicluster Aggregative Game of Euler-Lagrange Systems with Coupled Constraints
AU - Huang, Yi
AU - Meng, Ziyang
AU - Sun, Jian
N1 - Publisher Copyright:
© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
PY - 2024
Y1 - 2024
N2 - This article considers the distributed Nash equilibrium seeking problem of a multicluster aggregative game subject to local set constraints, consensus constraints in the same cluster, and coupled linear equality and nonlinear inequality constraints among all clusters. In the considered game, each cluster is composed of a group of players formulated by uncertain Euler-Lagrange (EL) dynamics, and its objective is to minimize its own cost function, which is the sum of the local functions of all players in the cluster. The local cost function of each player depends on its own decision and an aggregate of the decisions of all the players. An adaptive continuous-time distributed strategy is developed for uncertain EL systems to reach the generalized Nash equilibrium (GNE) of multicluster aggregative game. In particular, a new auxiliary system is synthesized using a projection operator, gradient descent, and dynamic average consensus to estimate the GNE. Based on the outputs of the auxiliary system, an adaptive tracking algorithm is developed for an EL system with uncertain parameters. Using the Lyapunov stability theory, it is shown that the developed distributed strategy achieves accurate convergence to the GNE. Finally, a numerical example is presented to demonstrate the theoretical results.
AB - This article considers the distributed Nash equilibrium seeking problem of a multicluster aggregative game subject to local set constraints, consensus constraints in the same cluster, and coupled linear equality and nonlinear inequality constraints among all clusters. In the considered game, each cluster is composed of a group of players formulated by uncertain Euler-Lagrange (EL) dynamics, and its objective is to minimize its own cost function, which is the sum of the local functions of all players in the cluster. The local cost function of each player depends on its own decision and an aggregate of the decisions of all the players. An adaptive continuous-time distributed strategy is developed for uncertain EL systems to reach the generalized Nash equilibrium (GNE) of multicluster aggregative game. In particular, a new auxiliary system is synthesized using a projection operator, gradient descent, and dynamic average consensus to estimate the GNE. Based on the outputs of the auxiliary system, an adaptive tracking algorithm is developed for an EL system with uncertain parameters. Using the Lyapunov stability theory, it is shown that the developed distributed strategy achieves accurate convergence to the GNE. Finally, a numerical example is presented to demonstrate the theoretical results.
KW - Coupled constraints
KW - Euler - Lagrange (EL) systems
KW - distributed Nash equilibrium seeking
KW - multicluster aggregative game
UR - http://www.scopus.com/inward/record.url?scp=85182942502&partnerID=8YFLogxK
U2 - 10.1109/TCYB.2023.3347653
DO - 10.1109/TCYB.2023.3347653
M3 - Article
AN - SCOPUS:85182942502
SN - 2168-2267
VL - 54
SP - 5672
EP - 5683
JO - IEEE Transactions on Cybernetics
JF - IEEE Transactions on Cybernetics
IS - 10
ER -