Distributed Fuzzy Clustering Based Association Rule Mining: Design, Deployment and Implementation

Jinxian Wu, Li Dai*, Yaling Ma, Weidong Zou, Yuanqing Xia

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

With the explosive growth of transactional big data in various scenarios such as manufacturing chain and supply chain etc., fuzzy association rule mining (FARM) algorithms as a practical method in data analysis and decision making are confronted with unprecedented challenges. Commonly used centralized FARM algorithms are no longer suitable for current numerical big data. In this paper, a distributed fuzzy clustering based association rule mining (DFARM) framework is proposed where outside-layer and inside-layer distribution are employed to realize the parallel operation of the whole FARM algorithm. In order to implement the proposed framework, we specifically design an implementation algorithm by the 'Map-Reduce' paradigm. Through the proposed algorithm, distributed association rule mining can be carried out for any form of data such as Boolean data or numerical data with various volumes. Furthermore, various experiments are conducted to validate that our algorithm outperforms the centralized one in terms of device utilization and time performance.

源语言英语
主期刊名Proceeding - 2021 China Automation Congress, CAC 2021
出版商Institute of Electrical and Electronics Engineers Inc.
4366-4372
页数7
ISBN(电子版)9781665426473
DOI
出版状态已出版 - 2021
活动2021 China Automation Congress, CAC 2021 - Beijing, 中国
期限: 22 10月 202124 10月 2021

出版系列

姓名Proceeding - 2021 China Automation Congress, CAC 2021

会议

会议2021 China Automation Congress, CAC 2021
国家/地区中国
Beijing
时期22/10/2124/10/21

指纹

探究 'Distributed Fuzzy Clustering Based Association Rule Mining: Design, Deployment and Implementation' 的科研主题。它们共同构成独一无二的指纹。

引用此