Distributed Adaptive Gradient Algorithm with Gradient Tracking for Stochastic Non-Convex Optimization

Dongyu Han, Kun Liu, Yeming Lin, Yuanqing Xia

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 3
see details

摘要

This paper considers a distributed stochastic non-convex optimization problem, where the nodes in a network cooperatively minimize a sum of <inline-formula><tex-math notation="LaTeX">$L$</tex-math></inline-formula>-smooth local cost functions with sparse gradients. By adaptively adjusting the stepsizes according to the historical (possibly sparse) gradients, a distributed adaptive gradient algorithm is proposed, in which a gradient tracking estimator is used to handle the heterogeneity between different local cost functions. We establish an upper bound on the optimality gap, which indicates that our proposed algorithm can reach a first-order stationary solution dependent on the upper bound on the variance of the stochastic gradients. Finally, numerical examples are presented to illustrate the effectiveness of the algorithm.

源语言英语
页(从-至)1-8
页数8
期刊IEEE Transactions on Automatic Control
DOI
出版状态已接受/待刊 - 2024

指纹

探究 'Distributed Adaptive Gradient Algorithm with Gradient Tracking for Stochastic Non-Convex Optimization' 的科研主题。它们共同构成独一无二的指纹。

引用此

Han, D., Liu, K., Lin, Y., & Xia, Y. (已接受/印刷中). Distributed Adaptive Gradient Algorithm with Gradient Tracking for Stochastic Non-Convex Optimization. IEEE Transactions on Automatic Control, 1-8. https://doi.org/10.1109/TAC.2024.3380710