TY - JOUR
T1 - Distinguish MnO2/Mn2+ Conversion/ Zn2+ Intercalation/ H+ Conversion Chemistries at Different Potentials in Aqueous Zn||MnO2 Batteries
AU - Li, Chuan
AU - Yuan, Haonan
AU - Liu, Tong
AU - Zhang, Rong
AU - Zhu, Jiaxiong
AU - Cui, Huilin
AU - Wang, Yanbo
AU - Cao, Duanyun
AU - Wang, Donghong
AU - Zhi, Chunyi
N1 - Publisher Copyright:
© 2024 Wiley-VCH GmbH.
PY - 2024/5/27
Y1 - 2024/5/27
N2 - The rechargeable aqueous Zn||MnO2 chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO2/Mn2+ conversion and Zn2+/H+ intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO2/Mn2+ conversion, Zn2+ intercalation, and H+ intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO2 battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn2+-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO2/Mn2+ conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn2+ and H+ ions in the MnO2 cathode, are specified as the exclusive intercalation of Zn2+ ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm−2 and high specific energy of 0.858 Wh cm−2, even at a low MnO2 loading mass of 0.5 mg cm−2 are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO2 batteries.
AB - The rechargeable aqueous Zn||MnO2 chemistry has been extensively explored, but its electrochemical reaction mechanisms, especially in the context of MnO2/Mn2+ conversion and Zn2+/H+ intercalation chemistry, remain not fully understood. Here, we designed an amphiphilic hydrogel electrolyte, which distinguished the MnO2/Mn2+ conversion, Zn2+ intercalation, and H+ intercalation and conversion processes at three distinct discharge plateaus of an aqueous Zn||MnO2 battery. The amphiphilic hydrogel electrolyte is featured with an extended electrochemical stability window up to 3.0 V, high ionic conductivity, Zn2+-selective ion tunnels, and hydrophobic associations with cathode materials. This specifically designed electrolyte allows the MnO2/Mn2+ conversion reaction at a discharge plateau of 1.75 V. More interesting, the discharge plateaus of ~1.33 V, previously assigned as the co-intercalation of Zn2+ and H+ ions in the MnO2 cathode, are specified as the exclusive intercalation of Zn2+ ions, leading to an ultra-flat voltage plateau. Furthermore, with a distinct three-step electrochemical energy storage process, a high areal capacity of 1.8 mAh cm−2 and high specific energy of 0.858 Wh cm−2, even at a low MnO2 loading mass of 0.5 mg cm−2 are achieved. To our knowledge, this is the first report to fully distinguish different mechanisms at different potentials in aqueous Zn||MnO2 batteries.
KW - Amphiphilic hydrogel electrolyte
KW - H/Zn intercalation chemistry
KW - Zinc ion batteries
KW - Zn//MnO batteries
UR - http://www.scopus.com/inward/record.url?scp=85190675800&partnerID=8YFLogxK
U2 - 10.1002/anie.202403504
DO - 10.1002/anie.202403504
M3 - Article
AN - SCOPUS:85190675800
SN - 1433-7851
VL - 63
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 22
M1 - e202403504
ER -