TY - GEN
T1 - Distant supervision for relation extraction with linear attenuation simulation and non-IID relevance embedding
AU - Yuan, Changsen
AU - Huang, Heyan
AU - Feng, Chong
AU - Liu, Xiao
AU - Wei, Xiaochi
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - Distant supervision for relation extraction is an efficient method to reduce labor costs and has been widely used to seek novel relational facts in large corpora, which can be identified as a multi-instance multi-label problem. However, existing distant supervision methods suffer from selecting important words in the sentence and extracting valid sentences in the bag. Towards this end, we propose a novel approach to address these problems in this paper. Firstly, we propose a linear attenuation simulation to reflect the importance of words in the sentence with respect to the distances between entities and words. Secondly, we propose a non-independent and identically distributed (non-IID) relevance embedding to capture the relevance of sentences in the bag. Our method can not only capture complex information of words about hidden relations, but also express the mutual information of instances in the bag. Extensive experiments on a benchmark dataset have well-validated the effectiveness of the proposed method.
AB - Distant supervision for relation extraction is an efficient method to reduce labor costs and has been widely used to seek novel relational facts in large corpora, which can be identified as a multi-instance multi-label problem. However, existing distant supervision methods suffer from selecting important words in the sentence and extracting valid sentences in the bag. Towards this end, we propose a novel approach to address these problems in this paper. Firstly, we propose a linear attenuation simulation to reflect the importance of words in the sentence with respect to the distances between entities and words. Secondly, we propose a non-independent and identically distributed (non-IID) relevance embedding to capture the relevance of sentences in the bag. Our method can not only capture complex information of words about hidden relations, but also express the mutual information of instances in the bag. Extensive experiments on a benchmark dataset have well-validated the effectiveness of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=85080901157&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85080901157
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 7418
EP - 7425
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
Y2 - 27 January 2019 through 1 February 2019
ER -