摘要
The dissipative property is crucial to the toughness and recovery of hydrogels. In our investigation, systematic uniaxial tension tests were conducted to evaluate the dissipative properties of poly (N-isopropylacrylamide) nanocomposite hydrogels. Two dissipative mechanisms are presented for both small and large stretches. Before yielding, most dissipation results from the orientation of clay platelets along the tensile direction; after yielding, polymer chains peel off from clay platelets to induce hysteresis. For the first time, a quadratic power law between the hysteresis work and the maximum stretch is obtained. The hysteresis work is irrelevant to the detailed loading history. When the hydrogel is unloaded to a critical displacement, polymer chains can re-adsorb to the surfaces of clay platelets. The quantity of re-ruptured physical bonds is proportional to the product of re-adsorption ratio and that of initially ruptured bonds. These results may be useful for the toughening design of hydrogels.
源语言 | 英语 |
---|---|
文章编号 | 244901 |
期刊 | Journal of Applied Physics |
卷 | 116 |
期 | 24 |
DOI | |
出版状态 | 已出版 - 28 12月 2014 |
已对外发布 | 是 |