Discriminative orthonormal dictionary learning for fast low-rank representation

Zhen Dong*, Mingtao Pei, Yunde Jia

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

This paper presents a discriminative orthonormal dictionary learning method for low-rank representation. The orthonormal property is beneficial for the representative power of the dictionary by avoiding the dictionary redundancy. To enhance the discriminative power of the dictionary, all the class-specific dictionaries which are encouraged to well represent the samples from the same class are optimized simultaneously. With the learned discriminative orthonormal dictionary, the low-rank representation problem can be solved much faster than traditional methods. Experiments on three public datasets demonstrate the effectiveness and efficiency of our method.

源语言英语
主期刊名Neural Information Processing - 22nd International Conference, ICONIP 2015, Proceedings
编辑Weng Kin Lai, Qingshan Liu, Tingwen Huang, Sabri Arik
出版商Springer Verlag
79-89
页数11
ISBN(印刷版)9783319265315
DOI
出版状态已出版 - 2015
活动22nd International Conference on Neural Information Processing, ICONIP 2015 - Istanbul, 土耳其
期限: 9 11月 201512 11月 2015

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
9489
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议22nd International Conference on Neural Information Processing, ICONIP 2015
国家/地区土耳其
Istanbul
时期9/11/1512/11/15

指纹

探究 'Discriminative orthonormal dictionary learning for fast low-rank representation' 的科研主题。它们共同构成独一无二的指纹。

引用此