TY - JOUR
T1 - Dirichlet heat kernel estimates for subordinate Brownian motions with Gaussian components
AU - Chen, Zhen Qing
AU - Kim, Panki
AU - Song, Renming
N1 - Publisher Copyright:
© 2016 by De Gruyter.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels, in C1,1 open sets D in of a large class of subordinate Brownian motions with Gaussian components. When D is bounded, our sharp two-sided Dirichlet heat kernel estimates hold for all t > 0. Integrating the heat kernel estimates with respect to the time variable t, we obtain sharp two-sided estimates for the Green functions, in bounded C1,1 open sets, of such subordinate Brownian motions with Gaussian components.
AB - In this paper, we derive explicit sharp two-sided estimates for the Dirichlet heat kernels, in C1,1 open sets D in of a large class of subordinate Brownian motions with Gaussian components. When D is bounded, our sharp two-sided Dirichlet heat kernel estimates hold for all t > 0. Integrating the heat kernel estimates with respect to the time variable t, we obtain sharp two-sided estimates for the Green functions, in bounded C1,1 open sets, of such subordinate Brownian motions with Gaussian components.
UR - http://www.scopus.com/inward/record.url?scp=84957878783&partnerID=8YFLogxK
U2 - 10.1515/crelle-2013-0090
DO - 10.1515/crelle-2013-0090
M3 - Article
AN - SCOPUS:84957878783
SN - 0075-4102
VL - 2016
SP - 111
EP - 138
JO - Journal fur die Reine und Angewandte Mathematik
JF - Journal fur die Reine und Angewandte Mathematik
IS - 711
ER -