摘要
Suppose that d ≥ 2 and α ∈ (1, 2). Let D be a bounded C1,1 open set in Rd and b an Rd -valued function on Rd whose components are in a certain Kato class of the rotationally symmetric α-stable process. In this paper, we derive sharp two-sided heat kernel estimates for Lb = δα/2 + b. ∇ in D with zero exterior condition. We also obtain the boundary Harnack principle for Lb in D with explicit decay rate.
源语言 | 英语 |
---|---|
页(从-至) | 2483-2538 |
页数 | 56 |
期刊 | Annals of Probability |
卷 | 40 |
期 | 6 |
DOI | |
出版状态 | 已出版 - 2012 |
已对外发布 | 是 |
指纹
探究 'Dirichlet heat kernel estimates for fractional laplacian with gradient perturbation' 的科研主题。它们共同构成独一无二的指纹。引用此
Chen, Z. Q., Kim, P., & Song, R. (2012). Dirichlet heat kernel estimates for fractional laplacian with gradient perturbation. Annals of Probability, 40(6), 2483-2538. https://doi.org/10.1214/11-AOP682