Dirichlet heat kernel estimates for fractional laplacian with gradient perturbation

Zhen Qing Chen*, Panki Kim, Renming Song

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

64 引用 (Scopus)

摘要

Suppose that d ≥ 2 and α ∈ (1, 2). Let D be a bounded C1,1 open set in Rd and b an Rd -valued function on Rd whose components are in a certain Kato class of the rotationally symmetric α-stable process. In this paper, we derive sharp two-sided heat kernel estimates for Lb = δα/2 + b. ∇ in D with zero exterior condition. We also obtain the boundary Harnack principle for Lb in D with explicit decay rate.

源语言英语
页(从-至)2483-2538
页数56
期刊Annals of Probability
40
6
DOI
出版状态已出版 - 2012
已对外发布

指纹

探究 'Dirichlet heat kernel estimates for fractional laplacian with gradient perturbation' 的科研主题。它们共同构成独一无二的指纹。

引用此