Dirichlet heat kernel estimates for Δα/2 + Δβ/2

Zhen Qing Chen*, Panki Kim, Renming Song

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

36 引用 (Scopus)

摘要

For d ≥ 1 and 0 < β < α < 2, consider a family of pseudo differential operators {Δα + aβΔβ/2; a ∈ [0, 1]} on ℝd that evolves continuously from Δα/2 to Δα/2 + Δβ/2. It gives arise to a family of Lévy processes {Xa, a ∈ [0, 1]} on ℝd, where each Xa is the independent sum of a symmetric α-stable process and a symmetric β-stable process with weight a. For any C1,1 open set D ⊂ ℝd, we establish explicit sharp two-sided estimates, which are uniform in a ∈ (0, 1], for the transition density function of the subprocess Xa,D of Xa killed upon leaving the open set D. The infinitesimal generator of Xa,D is the nonlocal operator Δα + aβΔβ/2 with zero exterior condition on Dc. As consequences of these sharp heat kernel estimates, we obtain uniform sharp Green function estimates for Xa,D and uniform boundary Harnack principle for Xa in D with explicit decay rate.

源语言英语
页(从-至)1357-1392
页数36
期刊Illinois Journal of Mathematics
54
4
DOI
出版状态已出版 - 2010

指纹

探究 'Dirichlet heat kernel estimates for Δα/2 + Δβ/2' 的科研主题。它们共同构成独一无二的指纹。

引用此