摘要
We prove the upper and lower bounds of the diameter of a compact manifold (Formula presented.) with (Formula presented.) and a family of Riemannian metrics (Formula presented.) satisfying some geometric flows. Except for Ricci flow, these flows include List–Ricci flow, harmonic-Ricci flow, and Lorentzian mean curvature flow on an ambient Lorentzian manifold with non-negative sectional curvature.
源语言 | 英语 |
---|---|
文章编号 | 4659 |
期刊 | Mathematics |
卷 | 11 |
期 | 22 |
DOI | |
出版状态 | 已出版 - 11月 2023 |
指纹
探究 'Diameter Estimate in Geometric Flows' 的科研主题。它们共同构成独一无二的指纹。引用此
Fang, S., & Zheng, T. (2023). Diameter Estimate in Geometric Flows. Mathematics, 11(22), 文章 4659. https://doi.org/10.3390/math11224659