Device-Free Multi-Location Human Activity Recognition Using Deep Complex Network

Xue Ding, Chunlei Hu, Weiliang Xie, Yi Zhong*, Jianfei Yang, Ting Jiang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

Wi-Fi-based human activity recognition has attracted broad attention for its advantages, which include being device-free, privacy-protected, unaffected by light, etc. Owing to the development of artificial intelligence techniques, existing methods have made great improvements in sensing accuracy. However, the performance of multi-location recognition is still a challenging issue. According to the principle of wireless sensing, wireless signals that characterize activity are also seriously affected by location variations. Existing solutions depend on adequate data samples at different locations, which are labor-intensive. To solve the above concerns, we present an amplitude- and phase-enhanced deep complex network (AP-DCN)-based multi-location human activity recognition method, which can fully utilize the amplitude and phase information simultaneously so as to mine more abundant information from limited data samples. Furthermore, considering the unbalanced sample number at different locations, we propose a perception method based on the deep complex network-transfer learning (DCN-TL) structure, which effectively realizes knowledge sharing among various locations. To fully evaluate the performance of the proposed method, comprehensive experiments have been carried out with a dataset collected in an office environment with 24 locations and five activities. The experimental results illustrate that the approaches can achieve 96.85% and 94.02% recognition accuracy, respectively.

源语言英语
文章编号6178
期刊Sensors
22
16
DOI
出版状态已出版 - 8月 2022

指纹

探究 'Device-Free Multi-Location Human Activity Recognition Using Deep Complex Network' 的科研主题。它们共同构成独一无二的指纹。

引用此