TY - JOUR
T1 - Development and performance validation of a low-cost algorithms-based hyperspectral imaging system for radiodermatitis assessment
AU - Hao, Shicheng
AU - Xiong, Ying
AU - Guo, Sisi
AU - Gao, Jing
AU - Chen, Xiaotong
AU - Zhang, Ruoyu
AU - Liu, Lihui
AU - Wang, Jianfeng
N1 - Publisher Copyright:
© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
PY - 2023
Y1 - 2023
N2 - Whilst radiotherapy (RT) is widely used for cancer treatment, radiodermatitis caused by RT is one most common severe side effect affecting 95% cancer patients. Accurate radiodermatitis assessment and classification is essential to adopt timely treatment, management and monitoring, which all depend on reliable and objective tools for radiodermatitis grading. We therefore, in this work, reported the development and grading performance validation of a low-cost (∼2318.2 CNY) algorithms-based hyperspectral imaging (aHSI) system for radiodermatitis assessment. The low-cost aHSI system was enabled through Monte Carlo (MC) simulations conducted on multi-spectra acquired from a custom built low-cost multispectral imaging (MSI) system, deriving algorithms-based hyper-spectra with spectral resolution of 1 nm. The MSI system was based on sequentially illuminated narrow-band light-emitting diodes (LEDs) and a CMOS camera. Erythema induced artificially on healthy volunteers was measured by the aHSI system developed, with algorithms-based hyper-spectra and skin layer resolved physiological parameters (i.e., the blood volume fraction (BVF) and the oxygen saturation of hemoglobin in blood, et. al.) derivation using MC simulations. The MC simulations derived BVF and the oxygen saturation of hemoglobin in blood showed significant (P < 0.001, analysis of variance: ANOVA) increase with erythema. Further 1D-convolution neural network (CNN) implemented on the algorithms-based hyper-spectra leads to an overall classification accuracy of 93.1%, suggesting the great potential of low-cost aHSI system developed for radiodermatitis assessment.
AB - Whilst radiotherapy (RT) is widely used for cancer treatment, radiodermatitis caused by RT is one most common severe side effect affecting 95% cancer patients. Accurate radiodermatitis assessment and classification is essential to adopt timely treatment, management and monitoring, which all depend on reliable and objective tools for radiodermatitis grading. We therefore, in this work, reported the development and grading performance validation of a low-cost (∼2318.2 CNY) algorithms-based hyperspectral imaging (aHSI) system for radiodermatitis assessment. The low-cost aHSI system was enabled through Monte Carlo (MC) simulations conducted on multi-spectra acquired from a custom built low-cost multispectral imaging (MSI) system, deriving algorithms-based hyper-spectra with spectral resolution of 1 nm. The MSI system was based on sequentially illuminated narrow-band light-emitting diodes (LEDs) and a CMOS camera. Erythema induced artificially on healthy volunteers was measured by the aHSI system developed, with algorithms-based hyper-spectra and skin layer resolved physiological parameters (i.e., the blood volume fraction (BVF) and the oxygen saturation of hemoglobin in blood, et. al.) derivation using MC simulations. The MC simulations derived BVF and the oxygen saturation of hemoglobin in blood showed significant (P < 0.001, analysis of variance: ANOVA) increase with erythema. Further 1D-convolution neural network (CNN) implemented on the algorithms-based hyper-spectra leads to an overall classification accuracy of 93.1%, suggesting the great potential of low-cost aHSI system developed for radiodermatitis assessment.
UR - http://www.scopus.com/inward/record.url?scp=85171284923&partnerID=8YFLogxK
U2 - 10.1364/BOE.500067
DO - 10.1364/BOE.500067
M3 - Article
AN - SCOPUS:85171284923
SN - 2156-7085
VL - 14
SP - 4990
EP - 5004
JO - Biomedical Optics Express
JF - Biomedical Optics Express
IS - 9
ER -