TY - JOUR
T1 - Detonation Characteristics of Gaseous Isopropyl Nitrate at High Concentrations
AU - Zeng, Linghui
AU - Liang, Huimin
AU - Zhang, Qi
N1 - Publisher Copyright:
© 2021 Łukasiewicz Research Network – Institute of Industrial Organic Chemistry, Poland
PY - 2021
Y1 - 2021
N2 - Isopropyl nitrate (IPN) is a component of propellant fuel. High concentrations of IPN can still produce detonation. To date, very limited literature is available regarding high concentrations of IPN detonations. The detonation pressure is related to the equivalence ratio and density of IPN/air mixtures. These two factors have opposing effects on the detonation of an IPN/air mixture. The detonation characteristics of gaseous IPN/air mixtures at high concentrations (300-4000 g/m3) have been studied numerically. The results showed that when the IPN concentration is 300-600 g/m3, density played a dominant role on detonation. The maximum detonation pressure, 2.81 MPa, and the maximum detonation velocity, 1890 m/s, occurred at a concentration of 600 g/m3 (equivalence ratio Φ = 2.15). When the IPN concentration was increased from 300 to 600 g/m3, the peak overpressure and velocity increased by 19.6% and 6.2%, respectively. When the IPN concentration is higher than 600 g/m3, the equivalence ratio is extremely large and the detonation properties were seriously degraded. An analysis of the detonation products illustrated the burn-off rate of high concentrations of IPN and the influence of the detonation product CH3CHO. At a concentration of 600 g/m3, the IPN/air mixture can achieve optimal detonation properties and fuel economy.
AB - Isopropyl nitrate (IPN) is a component of propellant fuel. High concentrations of IPN can still produce detonation. To date, very limited literature is available regarding high concentrations of IPN detonations. The detonation pressure is related to the equivalence ratio and density of IPN/air mixtures. These two factors have opposing effects on the detonation of an IPN/air mixture. The detonation characteristics of gaseous IPN/air mixtures at high concentrations (300-4000 g/m3) have been studied numerically. The results showed that when the IPN concentration is 300-600 g/m3, density played a dominant role on detonation. The maximum detonation pressure, 2.81 MPa, and the maximum detonation velocity, 1890 m/s, occurred at a concentration of 600 g/m3 (equivalence ratio Φ = 2.15). When the IPN concentration was increased from 300 to 600 g/m3, the peak overpressure and velocity increased by 19.6% and 6.2%, respectively. When the IPN concentration is higher than 600 g/m3, the equivalence ratio is extremely large and the detonation properties were seriously degraded. An analysis of the detonation products illustrated the burn-off rate of high concentrations of IPN and the influence of the detonation product CH3CHO. At a concentration of 600 g/m3, the IPN/air mixture can achieve optimal detonation properties and fuel economy.
KW - detonation products
KW - detonation properties
KW - fuel-rich
KW - isopropyl nitrate
KW - numerical simulation
UR - http://www.scopus.com/inward/record.url?scp=85111304009&partnerID=8YFLogxK
U2 - 10.22211/CEJEM/139396
DO - 10.22211/CEJEM/139396
M3 - Article
AN - SCOPUS:85111304009
SN - 1733-7178
VL - 18
SP - 245
EP - 270
JO - Central European Journal of Energetic Materials
JF - Central European Journal of Energetic Materials
IS - 2
ER -