Deterministic Reversible Data Augmentation for Neural Machine Translation

Jiashu Yao, Heyan Huang, Zeming Liu, Yuhang Guo

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Data augmentation is an effective way to diversify corpora in machine translation, but previous methods may introduce semantic inconsistency between original and augmented data because of irreversible operations and random subword sampling procedures. To generate both symbolically diverse and semantically consistent augmentation data, we propose Deterministic Reversible Data Augmentation (DRDA), a simple but effective data augmentation method for neural machine translation. DRDA adopts deterministic segmentations and reversible operations to generate multi-granularity subword representations and pulls them closer together with multi-view techniques. With no extra corpora or model changes required, DRDA outperforms strong baselines on several translation tasks with a clear margin (up to 4.3 BLEU gain over Transformer) and exhibits good robustness in noisy, low-resource, and cross-domain datasets.

源语言英语
主期刊名62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Proceedings of the Conference
编辑Lun-Wei Ku, Andre Martins, Vivek Srikumar
出版商Association for Computational Linguistics (ACL)
8075-8089
页数15
ISBN(电子版)9798891760998
出版状态已出版 - 2024
活动Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Hybrid, Bangkok, 泰国
期限: 11 8月 202416 8月 2024

出版系列

姓名Proceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN(印刷版)0736-587X

会议

会议Findings of the 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024
国家/地区泰国
Hybrid, Bangkok
时期11/08/2416/08/24

指纹

探究 'Deterministic Reversible Data Augmentation for Neural Machine Translation' 的科研主题。它们共同构成独一无二的指纹。

引用此