TY - JOUR
T1 - Detection of Respiratory Events during Sleep Based on Fusion Analysis and Entropy Features of Cardiopulmonary Signals
AU - Yan, Xinlei
AU - Liu, Juan
AU - Wang, Lin
AU - Wang, Shaochang
AU - Zhang, Senlin
AU - Xin, Yi
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/6
Y1 - 2023/6
N2 - Sleep apnea hypopnea syndrome (SAHS) is a common sleep disorder with a high prevalence. The apnea hypopnea index (AHI) is an important indicator used to diagnose the severity of SAHS disorders. The calculation of the AHI is based on the accurate identification of various types of sleep respiratory events. In this paper, we proposed an automatic detection algorithm for respiratory events during sleep. In addition to the accurate recognition of normal breathing, hypopnea and apnea events using heart rate variability (HRV), entropy and other manual features, we also presented a fusion of ribcage and abdomen movement data combined with the long short-term memory (LSTM) framework to achieve the distinction between obstructive and central apnea events. While only using electrocardiogram (ECG) features, the accuracy, precision, sensitivity, and F1 score of the XGBoost model are 0.877, 0.877, 0.876, and 0.876, respectively, demonstrating that it performs better than other models. Moreover, the accuracy, sensitivity, and F1 score of the LSTM model for detecting obstructive and central apnea events were 0.866, 0.867, and 0.866, respectively. The research results of this paper can be used for the automatic recognition of sleep respiratory events as well as AHI calculation of polysomnography (PSG), which provide a theoretical basis and algorithm references for out-of-hospital sleep monitoring.
AB - Sleep apnea hypopnea syndrome (SAHS) is a common sleep disorder with a high prevalence. The apnea hypopnea index (AHI) is an important indicator used to diagnose the severity of SAHS disorders. The calculation of the AHI is based on the accurate identification of various types of sleep respiratory events. In this paper, we proposed an automatic detection algorithm for respiratory events during sleep. In addition to the accurate recognition of normal breathing, hypopnea and apnea events using heart rate variability (HRV), entropy and other manual features, we also presented a fusion of ribcage and abdomen movement data combined with the long short-term memory (LSTM) framework to achieve the distinction between obstructive and central apnea events. While only using electrocardiogram (ECG) features, the accuracy, precision, sensitivity, and F1 score of the XGBoost model are 0.877, 0.877, 0.876, and 0.876, respectively, demonstrating that it performs better than other models. Moreover, the accuracy, sensitivity, and F1 score of the LSTM model for detecting obstructive and central apnea events were 0.866, 0.867, and 0.866, respectively. The research results of this paper can be used for the automatic recognition of sleep respiratory events as well as AHI calculation of polysomnography (PSG), which provide a theoretical basis and algorithm references for out-of-hospital sleep monitoring.
KW - SAHS
KW - apnea event
KW - entropy
KW - machine learning
KW - respiratory signal
UR - http://www.scopus.com/inward/record.url?scp=85163838518&partnerID=8YFLogxK
U2 - 10.3390/e25060879
DO - 10.3390/e25060879
M3 - Article
AN - SCOPUS:85163838518
SN - 1099-4300
VL - 25
JO - Entropy
JF - Entropy
IS - 6
M1 - 879
ER -