Detection of IoT botnet based on deep learning

Junyi Liu, Shiyue Liu, Sihua Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

30 引用 (Scopus)

摘要

In this paper, we propose a deep learning based approach for IoT botnet detection. We use the damped incremental statistics to extract basic traffic features of IoT devices and apply the Z-Score method to normalize the features. After that, the mangle area maps (TAM) based multivariate correlation analysis (MCA) algorithm is employed to generate dataset. Then we design a convolutional neural network (CNN) to learn the dataset and utilize the trained CNN to detect the traffic. The final experiments show that our approach can distinguish benign traffic and different kinds of attack traffic effectively and reaches the accuracy of 99.57%.

源语言英语
主期刊名Proceedings of the 38th Chinese Control Conference, CCC 2019
编辑Minyue Fu, Jian Sun
出版商IEEE Computer Society
8381-8385
页数5
ISBN(电子版)9789881563972
DOI
出版状态已出版 - 7月 2019
活动38th Chinese Control Conference, CCC 2019 - Guangzhou, 中国
期限: 27 7月 201930 7月 2019

出版系列

姓名Chinese Control Conference, CCC
2019-July
ISSN(印刷版)1934-1768
ISSN(电子版)2161-2927

会议

会议38th Chinese Control Conference, CCC 2019
国家/地区中国
Guangzhou
时期27/07/1930/07/19

指纹

探究 'Detection of IoT botnet based on deep learning' 的科研主题。它们共同构成独一无二的指纹。

引用此