摘要
This paper studies the problem of designing optimal privacy mechanism with less energy cost. The eavesdropper and the defender with limited resources should choose which channel to eavesdrop and defend, respectively. A zero-sum stochastic game framework is used to model the interaction between the two players and the game is solved through the Nash Q-learning approach. A numerical example is given to verify the proposed method.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings - 2022 Chinese Automation Congress, CAC 2022 |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 6361-6365 |
页数 | 5 |
ISBN(电子版) | 9781665465335 |
DOI | |
出版状态 | 已出版 - 2022 |
活动 | 2022 Chinese Automation Congress, CAC 2022 - Xiamen, 中国 期限: 25 11月 2022 → 27 11月 2022 |
出版系列
姓名 | Proceedings - 2022 Chinese Automation Congress, CAC 2022 |
---|---|
卷 | 2022-January |
会议
会议 | 2022 Chinese Automation Congress, CAC 2022 |
---|---|
国家/地区 | 中国 |
市 | Xiamen |
时期 | 25/11/22 → 27/11/22 |
指纹
探究 'Design of Privacy Mechanism for Cyber Physical Systems: A Nash Q-learning Approach' 的科研主题。它们共同构成独一无二的指纹。引用此
Zhang, Q., Meng, S., Liu, K., & Dai, W. (2022). Design of Privacy Mechanism for Cyber Physical Systems: A Nash Q-learning Approach. 在 Proceedings - 2022 Chinese Automation Congress, CAC 2022 (页码 6361-6365). (Proceedings - 2022 Chinese Automation Congress, CAC 2022; 卷 2022-January). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CAC57257.2022.10054655