Design of low-energy transfer from lunar orbit to asteroid in the Sun-Earth-Moon system

Ya Min Wang, Dong Qiao*, Ping Yuan Cui

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

Asteroid exploration trajectories which start from a lunar orbit are investigated in this work. It is assumed that the probe departs from lunar orbit and returns to the vicinity of Earth, then escapes from the Earth by performing a perigee maneuver. A low-energy transfer in Sun-Earth-Moon system is adopted. First, the feasible region of low-energy transfer from lunar orbit to perigee within 5 000km height above the Earth surface in Sun-Earth-Moon system is calculated and analyzed. Three transfer types are found, i.e., large maneuver and fast transfers, small maneuver and fast transfers, and disordered and slow transfers. Most of feasibility trajectories belong to the first two types. Then, the low-energy trajectory leg from lunar orbit to perigee and a heliocentric trajectory leg from perigee to asteroid are patched by a perigee maneuver. The optimal full-transfer trajectory is obtained by exploiting the differential evolution algorithm. Finally, taking 4179 Toutatis asteroid as the target, some low-energy transfer trajectories are obtained and analyzed.

源语言英语
页(从-至)966-972
页数7
期刊Acta Mechanica Sinica/Lixue Xuebao
30
6
DOI
出版状态已出版 - 12月 2014

指纹

探究 'Design of low-energy transfer from lunar orbit to asteroid in the Sun-Earth-Moon system' 的科研主题。它们共同构成独一无二的指纹。

引用此