TY - JOUR
T1 - Design method of nonsymmetric imaging systems consisting of multiple flat phase elements
AU - Yang, Tong
AU - Cheng, Dewen
AU - Wang, Yongtian
N1 - Publisher Copyright:
© 2018 Optical Society of America.
PY - 2018/9/17
Y1 - 2018/9/17
N2 - Imaging systems consisting of flat phase elements can realize the same functions and applications of conventional geometric optical systems, as well as the ones using aspherical or freeform optics, but can achieve more compactness, lighter-weight and easier-alignment. In addition, it is easy to integrate multiple phase elements into a single flat element. Here we propose a novel design method and realize the design of off-axis nonsymmetric imaging systems consisting of multiple flat phase elements. Compared with other traditional design methods of phase elements, the whole design process starts from an initial system using simple true geometric planes. The phase profiles or functions are generated point-by-point directly based on the given system specifications and configuration. In comparison with other direct or point-by-point design methods of flat phase elements, the rays of multiple fields and pupil positions are employed in the design framework. Closed-form phase functions of multiple flat elements are designed quickly and effectively by connecting and integrating the real three-dimensional space and the phase function space. This method can be taken as a fast phase retrieval method to some degree. To demonstrate the feasibility of the proposed design method, we present a high-performance compact system as design example. The design method and framework depicted in this paper can be applied in many areas, such as virtual reality (VR) and augmented reality (AR), miniature cameras, high-performance telescopy, microscopy, and illumination design.
AB - Imaging systems consisting of flat phase elements can realize the same functions and applications of conventional geometric optical systems, as well as the ones using aspherical or freeform optics, but can achieve more compactness, lighter-weight and easier-alignment. In addition, it is easy to integrate multiple phase elements into a single flat element. Here we propose a novel design method and realize the design of off-axis nonsymmetric imaging systems consisting of multiple flat phase elements. Compared with other traditional design methods of phase elements, the whole design process starts from an initial system using simple true geometric planes. The phase profiles or functions are generated point-by-point directly based on the given system specifications and configuration. In comparison with other direct or point-by-point design methods of flat phase elements, the rays of multiple fields and pupil positions are employed in the design framework. Closed-form phase functions of multiple flat elements are designed quickly and effectively by connecting and integrating the real three-dimensional space and the phase function space. This method can be taken as a fast phase retrieval method to some degree. To demonstrate the feasibility of the proposed design method, we present a high-performance compact system as design example. The design method and framework depicted in this paper can be applied in many areas, such as virtual reality (VR) and augmented reality (AR), miniature cameras, high-performance telescopy, microscopy, and illumination design.
UR - http://www.scopus.com/inward/record.url?scp=85053376184&partnerID=8YFLogxK
U2 - 10.1364/OE.26.025347
DO - 10.1364/OE.26.025347
M3 - Article
C2 - 30469637
AN - SCOPUS:85053376184
SN - 1094-4087
VL - 26
SP - 25347
EP - 25363
JO - Optics Express
JF - Optics Express
IS - 19
ER -