Design and properties of N,N’-linked bis-1,2,4-triazoles compounds as promising energetic materials

Fang Bao, Shaohua Jin, Yi Li, Yuping Zhang, Kun Chen*, Lijie Li

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

N,N’-linked bis-1,2,4-trizaoles compounds substituted with different groups such as -NH2, -NO2, -NHNO2, -OH and -CH(NO2)2 were designed and studied by density functional theory (DFT) at B3LYP/6-311+G(2df, 2p) level. The calculated results of heats of detonation, detonation velocities, detonation pressures, bond dissociation energy and impact sensitivity (h50) indicated that -NO2, -NHNO2 and -CH(NO2)2 groups play an important role in elevating the detonation performances of designed compounds, and -NO2 group play an important role in elevating the thermal stability of designed compounds, and the designed compounds with -NO2 and -NHNO2 groups were less sensitivity than that of -CH(NO2)2 group. The calculated detonation performances, thermal stability and impact sensitivity of designed compounds were compared with those of some classical explosives such as 1,3,5-trinitro-1,3,5-triazinane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). The computed results show that 3,5,3’-trinitro-4,4’-bis-1,2,4-triazoles (B3) possess higher detonation performances and thermal stability than that of RDX, but more sensitivity than that of RDX; 3,5,3’,5’-tetradinitromethyl-4,4’-bis-1,2,4-triazoles (E4) possess higher detonation performances than that of RDX, but lower thermal stability and more sensitivity than that of RDX; 3,5,3’,5’-tetranitro-4,4’-bis-1,2,4-triazoles (B4) possess higher detonation performances and thermal stability than that of HMX, but more sensitivity than that of HMX; 3,5,3’,5’-tetranitramine-4,4’-bis-1,2,4-triazoles (C4) possess higher detonation performances than that of HMX, and similar sensitivity to HMX, but lower thermal stability than that of and HMX.

源语言英语
文章编号130
期刊Journal of Molecular Modeling
26
6
DOI
出版状态已出版 - 1 6月 2020

指纹

探究 'Design and properties of N,N’-linked bis-1,2,4-triazoles compounds as promising energetic materials' 的科研主题。它们共同构成独一无二的指纹。

引用此