TY - JOUR
T1 - Design and optimization of bionic Nautilus volute for a hydrodynamic retarder
AU - Wei, Wei
AU - Tianlang, Tao
AU - Lurong, Si
AU - Guanghua, Wang
AU - Qingdong, Yan
N1 - Publisher Copyright:
© 2023 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
PY - 2023
Y1 - 2023
N2 - To reduce the energy loss of volute and improve the emergency braking performance of hydrodynamic retarder under design condition, a bionic volute optimization design method is proposed based on the Nautilus shell. First, the accuracy of the numerical method is verified by grid convergence analysis and experiments. Thereafter, the bionic parametric expression is performed based on the cross-section shape of the Nautilus shell. Subsequently, sample points are created using the Optimal Latin Hypercube sampling method and numerically simulated. Radial basis function neural network and multi-objective genetic algorithm are used for optimization. Finally, the flow field inside the volute and the braking performance of the hydrodynamic retarder are compared by numerical calculation and experiment. Results show that the internal flow field of the bionic volute is more uniform, the energy loss is reduced by 78.95%, and the oil flow speed is increased by 40.61%. In addition, the stable flow field can be established faster during braking, the peak torque can be increased by 6.15%, and the onset time can be advanced by 6.58%. The analysis of energy characteristics shows that the improved performance of the bionic volute can be attributed to its improved internal oil flow conditions, thus reducing the energy loss.
AB - To reduce the energy loss of volute and improve the emergency braking performance of hydrodynamic retarder under design condition, a bionic volute optimization design method is proposed based on the Nautilus shell. First, the accuracy of the numerical method is verified by grid convergence analysis and experiments. Thereafter, the bionic parametric expression is performed based on the cross-section shape of the Nautilus shell. Subsequently, sample points are created using the Optimal Latin Hypercube sampling method and numerically simulated. Radial basis function neural network and multi-objective genetic algorithm are used for optimization. Finally, the flow field inside the volute and the braking performance of the hydrodynamic retarder are compared by numerical calculation and experiment. Results show that the internal flow field of the bionic volute is more uniform, the energy loss is reduced by 78.95%, and the oil flow speed is increased by 40.61%. In addition, the stable flow field can be established faster during braking, the peak torque can be increased by 6.15%, and the onset time can be advanced by 6.58%. The analysis of energy characteristics shows that the improved performance of the bionic volute can be attributed to its improved internal oil flow conditions, thus reducing the energy loss.
KW - Hydrodynamic retarder
KW - bionic design
KW - entropy production theory
KW - multi-objective optimization
KW - neural network
UR - http://www.scopus.com/inward/record.url?scp=85175657639&partnerID=8YFLogxK
U2 - 10.1080/19942060.2023.2273391
DO - 10.1080/19942060.2023.2273391
M3 - Article
AN - SCOPUS:85175657639
SN - 1994-2060
VL - 17
JO - Engineering Applications of Computational Fluid Mechanics
JF - Engineering Applications of Computational Fluid Mechanics
IS - 1
M1 - 2273391
ER -