TY - GEN
T1 - Design and Control of a Porous Helical Microdrill with a Magnetic Field for Motions
AU - Hou, Yaozhen
AU - Wang, Huaping
AU - Shi, Qing
AU - Zhong, Shihao
AU - Qiu, Yukang
AU - Sun, Tao
AU - Huang, Qiang
AU - Fukuda, Toshio
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Magnetically controlled microrobots have attracted wide attention in noninvasive therapy. However, it is challenging to design a microrobot with both low motion resistance and multi-mode motions control. Here, we design a 100 μm helical drill-like microrobot with biodegradable materials GelMA and HAMA. The microrobot is optimized with surface pores to reduce the resistance and alternately rotates and oscillates in composite magnetic fields. Inspired by the dimpled surface of the golf ball to reduce the pressure drag via fluid transition, the microdrill is modified with 98 dimples over its surface to effectively reduce the movement resistance. Considering hyperviscosity tasks, a control strategy to dynamically switch rotating and oscillating composite magnetic fields is performed with visual recognition of the local environment, which actuates the microdrill to move flexibly. The experiment demonstrates that the swimming step-out frequency of the dimpled microdrill is improved 44.5% to 13 Hz, and swimming velocity of the dimpled microdrill is improved by 13.7% to 25.3 μm/s. Furthermore, the microdrills can be degraded by collagenase in a concentration of 0.35 mg/mL, which shows good biocompatibility and is anticipated to be applied in microsurgery and untethered therapies in the future. (This work was supported by National Key R&D Program of China under grant number 2019YFB1309701, and0 National Natural Science Foundation of China under grant number 62073042).
AB - Magnetically controlled microrobots have attracted wide attention in noninvasive therapy. However, it is challenging to design a microrobot with both low motion resistance and multi-mode motions control. Here, we design a 100 μm helical drill-like microrobot with biodegradable materials GelMA and HAMA. The microrobot is optimized with surface pores to reduce the resistance and alternately rotates and oscillates in composite magnetic fields. Inspired by the dimpled surface of the golf ball to reduce the pressure drag via fluid transition, the microdrill is modified with 98 dimples over its surface to effectively reduce the movement resistance. Considering hyperviscosity tasks, a control strategy to dynamically switch rotating and oscillating composite magnetic fields is performed with visual recognition of the local environment, which actuates the microdrill to move flexibly. The experiment demonstrates that the swimming step-out frequency of the dimpled microdrill is improved 44.5% to 13 Hz, and swimming velocity of the dimpled microdrill is improved by 13.7% to 25.3 μm/s. Furthermore, the microdrills can be degraded by collagenase in a concentration of 0.35 mg/mL, which shows good biocompatibility and is anticipated to be applied in microsurgery and untethered therapies in the future. (This work was supported by National Key R&D Program of China under grant number 2019YFB1309701, and0 National Natural Science Foundation of China under grant number 62073042).
KW - Composite magnetic field control
KW - Helical microstructure
KW - Magnetic microrobot
KW - Motions in high-viscosity fluids
KW - Vascular therapy
UR - http://www.scopus.com/inward/record.url?scp=85135820985&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-13844-7_20
DO - 10.1007/978-3-031-13844-7_20
M3 - Conference contribution
AN - SCOPUS:85135820985
SN - 9783031138430
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 200
EP - 208
BT - Intelligent Robotics and Applications - 15th International Conference, ICIRA 2022, Proceedings
A2 - Liu, Honghai
A2 - Ren, Weihong
A2 - Yin, Zhouping
A2 - Liu, Lianqing
A2 - Jiang, Li
A2 - Gu, Guoying
A2 - Wu, Xinyu
PB - Springer Science and Business Media Deutschland GmbH
T2 - 15th International Conference on Intelligent Robotics and Applications, ICIRA 2022
Y2 - 1 August 2022 through 3 August 2022
ER -