Dependency-Type Weighted Graph Convolutional Network on End-to-End Aspect-Based Sentiment Analysis

Yusong Mu*, Shumin Shi

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Previous studies consider little on using dependency-type messages in the E2E-ABSA task. Studies using dependency-type messages just contact the dependency-type message and word embedding vectors, which may not fully fuse the context feature and information from the dependency type. This paper proposes a new model called Dependency-Type Weighted Graph Convolution Network (DTW-GCN) to compose dependency-type messages and word embedding. We use a type-weighted matrix to combine the dependency-type message, and DTW-GCN could fuse the dependency-type message and word embedding vectors. Experiments conducted on three benchmark datasets verify the effectiveness of our model.

源语言英语
主期刊名Intelligent Information Processing XII - 13th IFIP TC 12 International Conference, IIP 2024, Proceedings
编辑Zhongzhi Shi, Jim Torresen, Shengxiang Yang
出版商Springer Science and Business Media Deutschland GmbH
46-57
页数12
ISBN(印刷版)9783031579189
DOI
出版状态已出版 - 2024
活动13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024 - Shenzhen, 中国
期限: 3 5月 20246 5月 2024

出版系列

姓名IFIP Advances in Information and Communication Technology
704 IFIPAICT
ISSN(印刷版)1868-4238
ISSN(电子版)1868-422X

会议

会议13th IFIP TC 12 International Conference on Intelligent Information Processing, IIP 2024
国家/地区中国
Shenzhen
时期3/05/246/05/24

指纹

探究 'Dependency-Type Weighted Graph Convolutional Network on End-to-End Aspect-Based Sentiment Analysis' 的科研主题。它们共同构成独一无二的指纹。

引用此