DePA: Improving Non-autoregressive Machine Translation with Dependency-Aware Decoder

Jiaao Zhan, Qian Chen, Boxing Chen, Wen Wang, Yu Bai, Yang Gao*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Non-autoregressive machine translation (NAT) models have lower translation quality than autoregressive translation (AT) models because NAT decoders do not depend on previous target tokens in the decoder input. We propose a novel and general Dependency-Aware Decoder (DePA) to enhance target dependency modeling in the decoder of fully NAT models from two perspectives: decoder self-attention and decoder input. First, we propose an autoregressive forward-backward pre-training phase before NAT training, which enables the NAT decoder to gradually learn bidirectional target dependencies for the final NAT training. Second, we transform the decoder input from the source language representation space to the target language representation space through a novel attentive transformation process, which enables the decoder to better capture target dependencies. DePA can be applied to any fully NAT models. Extensive experiments show that DePA consistently improves highly competitive and state-of-the-art fully NAT models on widely used WMT and IWSLT benchmarks by up to 1.88 BLEU gain, while maintaining the inference latency comparable to other fully NAT models.1

源语言英语
主期刊名20th International Conference on Spoken Language Translation, IWSLT 2023 - Proceedings of the Conference
编辑Elizabeth Salesky, Marcello Federico, Marine Carpuat
出版商Association for Computational Linguistics
478-490
页数13
ISBN(电子版)9781959429845
出版状态已出版 - 2023
活动20th International Conference on Spoken Language Translation, IWSLT 2023 - Hybrid, Toronto, 加拿大
期限: 13 7月 202314 7月 2023

出版系列

姓名20th International Conference on Spoken Language Translation, IWSLT 2023 - Proceedings of the Conference

会议

会议20th International Conference on Spoken Language Translation, IWSLT 2023
国家/地区加拿大
Hybrid, Toronto
时期13/07/2314/07/23

指纹

探究 'DePA: Improving Non-autoregressive Machine Translation with Dependency-Aware Decoder' 的科研主题。它们共同构成独一无二的指纹。

引用此