Dense and residual neural networks for full-waveform LiDAR echo decomposition

Gangping Liu, Jun Ke*

*此作品的通讯作者

科研成果: 期刊稿件会议文章同行评审

摘要

For full-waveform LiDAR echo signals, a high efficient and accurate decomposition method based on a dense (Full-waveform Dense Connection Network, FDCN) and a residual neural networks (Full-waveform Deep Residual Network, FDRN) is proposed in this paper.

源语言英语
文章编号IF4D.3
期刊Optics InfoBase Conference Papers
出版状态已出版 - 2021
活动Imaging Systems and Applications, ISA 2021 - Part of OSA Imaging and Applied Optics Congress 2021 - Virtual, Online, 美国
期限: 19 7月 202123 7月 2021

指纹

探究 'Dense and residual neural networks for full-waveform LiDAR echo decomposition' 的科研主题。它们共同构成独一无二的指纹。

引用此