Deep Neural Network Framework Based on Word Embedding for Protein Glutarylation Sites Prediction

Chuan Ming Liu*, Van Dai Ta, Nguyen Quoc Khanh Le, Direselign Addis Tadesse, Chongyang Shi*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

13 引用 (Scopus)

摘要

In recent years, much research has found that dysregulation of glutarylation is associated with many human diseases, such as diabetes, cancer, and glutaric aciduria type I. Therefore, glutarylation identification and characterization are essential tasks for determining modification-specific proteomics. This study aims to propose a novel deep neural network framework based on word embedding techniques for glutarylation sites prediction. Multiple deep neural network models are implemented to evaluate the performance of glutarylation sites prediction. Furthermore, an extensive experimental comparison of word embedding techniques is conducted to utilize the most efficient method for improving protein sequence data representation. The results suggest that the proposed deep neural networks not only improve protein sequence representation but also work effectively in glutarylation sites prediction by obtaining a higher accuracy and confidence rate compared to the previous work. Moreover, embedding techniques were proven to be more productive than the pre-trained word embedding techniques for glutarylation sequence representation. Our proposed method has significantly outperformed all traditional performance metrics compared to the advanced integrated vector support, with accuracy, specificity, sensitivity, and correlation coefficient of 0.79, 0.89, 0.59, and 0.51, respectively. It shows the potential to detect new glutarylation sites and uncover the relationships between glutarylation and well-known lysine modification.

源语言英语
文章编号1213
期刊Life
12
8
DOI
出版状态已出版 - 8月 2022

指纹

探究 'Deep Neural Network Framework Based on Word Embedding for Protein Glutarylation Sites Prediction' 的科研主题。它们共同构成独一无二的指纹。

引用此