Deep manifold-to-manifold transforming network

Tong Zhang, Wenming Zheng*, Zhen Cui, Chaolong Li

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

13 引用 (Scopus)

摘要

In this paper, we propose an end-to-end deep manifold-to-manifold transforming network (DMT-Net), which makes SPD matrices flow from one Riemannian manifold to another more discriminative one. For discriminative feature learning, two specific layers on manifolds are developed: (i) the local SPD convolutional layer, (ii) the non-linear SPD activation layer, where positive definiteness is satisfied for both two layers. Further, to relieve computational burden of kernels on relative large-scale data, we design a batch-kernelized layer to favor batchwise kernel optimization of deep networks. Specifically, one reference set dynamically changing with the network training is introduced to break the limitation of memory size. We evaluate our proposed method on action recognition datasets, where input signals are popularly modeled as SPD matrices. The experimental results demonstrate that our DMT-Net is more competitive than state-of-the-art methods.

源语言英语
主期刊名2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
出版商IEEE Computer Society
4098-4102
页数5
ISBN(电子版)9781479970612
DOI
出版状态已出版 - 29 8月 2018
已对外发布
活动25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, 希腊
期限: 7 10月 201810 10月 2018

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议25th IEEE International Conference on Image Processing, ICIP 2018
国家/地区希腊
Athens
时期7/10/1810/10/18

指纹

探究 'Deep manifold-to-manifold transforming network' 的科研主题。它们共同构成独一无二的指纹。

引用此