TY - JOUR
T1 - Deep Learning-Based Trajectory Planning and Control for Autonomous Ground Vehicle Parking Maneuver
AU - Chai, Runqi
AU - Liu, Derong
AU - Liu, Tianhao
AU - Tsourdos, Antonios
AU - Xia, Yuanqing
AU - Chai, Senchun
N1 - Publisher Copyright:
© 2004-2012 IEEE.
PY - 2023/7/1
Y1 - 2023/7/1
N2 - In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners - This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
AB - In this paper, a novel integrated real-time trajectory planning and tracking control framework capable of dealing with autonomous ground vehicle (AGV) parking maneuver problems is presented. In the motion planning component, a newly-proposed idea of utilizing deep neural networks (DNNs) for approximating optimal parking trajectories is further extended by taking advantages of a recurrent network structure. The main aim is to fully exploit the inherent relationships between different vehicle states in the training process. Furthermore, two transfer learning strategies are applied such that the developed motion planner can be adapted to suit various AGVs. In order to follow the planned maneuver trajectory, an adaptive learning tracking control algorithm is designed and served as the motion controller. By adapting the network parameters, the stability of the proposed control scheme, along with the convergence of tracking errors, can be theoretically guaranteed. In order to validate the effectiveness and emphasize key features of our proposal, a number of experimental studies and comparative analysis were executed. The obtained results reveal that the proposed strategy can enable the AGV to fulfill the parking mission with enhanced motion planning and control performance. Note to Practitioners - This article was motivated by the problem of optimal automatic parking planning and tracking control for autonomous ground vehicles (AGVs) maneuvering in a restricted environment (e.g., constrained parking regions). A number of challenges may arise when dealing with this problem (e.g., the model uncertainties involved in the vehicle dynamics, system variable limits, and the presence of external disturbances). Existing approaches to address such a problem usually exploit the merit of optimization-based planning/control techniques such as model predictive control and dynamic programming in order for an optimal solution. However, two practical issues may require further considerations: 1). The nonlinear (re)optimization process tends to consume a large amount of computing power and it might not be affordable in real-time; 2). Existing motion planning and control algorithms might not be easily adapted to suit various types of AGVs. To overcome the aforementioned issues, we present an idea of utilizing the recurrent deep neural network (RDNN) for planning optimal parking maneuver trajectories and an adaptive learning NN-based (ALNN) control scheme for robust trajectory tracking. In addition, by introducing two transfer learning strategies, the proposed RDNN motion planner can be adapted to suit different AGVs. In our follow-up research, we will explore the possibility of extending the developed methodology for large-scale AGV parking systems collaboratively operating in a more complex cluttered environment.
KW - Real-time trajectory planning
KW - adaptive learning tracking control
KW - autonomous ground vehicle
KW - deep neural networks
KW - tracking control
UR - http://www.scopus.com/inward/record.url?scp=85133796546&partnerID=8YFLogxK
U2 - 10.1109/TASE.2022.3183610
DO - 10.1109/TASE.2022.3183610
M3 - Article
AN - SCOPUS:85133796546
SN - 1545-5955
VL - 20
SP - 1633
EP - 1647
JO - IEEE Transactions on Automation Science and Engineering
JF - IEEE Transactions on Automation Science and Engineering
IS - 3
ER -