Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT

Minghui Wu*, Ziwei Wan, Yang Wang, Shicong Liu, Zhen Gao*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Due to the high dimensionality of the channel state information (CSI) in massive multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems, acquiring accurate CSI at the transmitter (CSIT) with limited feedback overhead is difficult, severely degrading the performance of conventional SDMA beamforming techniques. To this end, this paper proposes a deep learning (DL)-based end-to-end (E2E) rate-splitting multiple access (RSMA) beamforming scheme for massive MIMO-OFDM systems, including an analog beamforming network (ABN) and a model-driven RSMA digital beamforming network (RDBN). We adopt an E2E training approach to jointly train the proposed ABN and MRBN to obtain better beamforming performance. Numerical results show that the proposed DL-based E2E RSMA beamforming scheme significantly improves the system capacity and outperforms the state-of-the-art schemes.

源语言英语
主期刊名2022 International Symposium on Wireless Communication Systems, ISWCS 2022
出版商VDE VERLAG GMBH
ISBN(电子版)9781665455442
DOI
出版状态已出版 - 2022
活动2022 International Symposium on Wireless Communication Systems, ISWCS 2022 - Hangzhou, 中国
期限: 19 10月 202222 10月 2022

出版系列

姓名Proceedings of the International Symposium on Wireless Communication Systems
2022-October
ISSN(印刷版)2154-0217
ISSN(电子版)2154-0225

会议

会议2022 International Symposium on Wireless Communication Systems, ISWCS 2022
国家/地区中国
Hangzhou
时期19/10/2222/10/22

指纹

探究 'Deep Learning-Based Rate-Splitting Multiple Access for Massive MIMO-OFDM Systems With Imperfect CSIT' 的科研主题。它们共同构成独一无二的指纹。

引用此