Deep Learning-Based Fault Diagnosis in Quadcopter Actuators: A CNN-LSTM Network With Bayesian Optimization

Huaishi Zhu, Haoyu Wang, Fangfei Cao*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In recent years, deep neural networks have shown promising results in modern fault diagnosis. This paper focuses on diagnosing actuator faults in quadcopters using a deep learning strategy. Considering the dynamic and temporal characteristics of quadcopters, a deep neural network model consists of the convolution neural network and the long short-term memory network (CNN-LSTM) is designed with the exponential linear unit (ELU) activation function. To enhance the diagnostic capability, Bayesian optimization (BO) algorithm is utilized for selecting optimal hyperparameters of the designed deep neural network model. Experimental results demonstrate that the proposed method can achieve high accuracy in actuator fault diagnosis of quadcopters.

源语言英语
主期刊名Proceedings - 2024 China Automation Congress, CAC 2024
出版商Institute of Electrical and Electronics Engineers Inc.
4246-4251
页数6
ISBN(电子版)9798350368604
DOI
出版状态已出版 - 2024
活动2024 China Automation Congress, CAC 2024 - Qingdao, 中国
期限: 1 11月 20243 11月 2024

出版系列

姓名Proceedings - 2024 China Automation Congress, CAC 2024

会议

会议2024 China Automation Congress, CAC 2024
国家/地区中国
Qingdao
时期1/11/243/11/24

指纹

探究 'Deep Learning-Based Fault Diagnosis in Quadcopter Actuators: A CNN-LSTM Network With Bayesian Optimization' 的科研主题。它们共同构成独一无二的指纹。

引用此

Zhu, H., Wang, H., & Cao, F. (2024). Deep Learning-Based Fault Diagnosis in Quadcopter Actuators: A CNN-LSTM Network With Bayesian Optimization. 在 Proceedings - 2024 China Automation Congress, CAC 2024 (页码 4246-4251). (Proceedings - 2024 China Automation Congress, CAC 2024). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/CAC63892.2024.10865596