Deep Graph Structural Infomax

Wenting Zhao, Gongping Xu, Zhen Cui*, Siqiang Luo, Cheng Long, Tong Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

In the scene of self-supervised graph learning, Mutual Information (MI) was recently introduced for graph encoding to generate robust node embeddings. A successful representative is Deep Graph Infomax (DGI), which essentially operates on the space of node features but ignores topological structures, and just considers global graph summary. In this paper, we present an effective model called Deep Graph Structural Infomax (DGSI) to learn node representation. We explore to derive the structural mutual information from the perspective of Information Bottleneck (IB), which defines a trade-off between the sufficiency and minimality of representation on the condition of the topological structure preservation. Intuitively, the derived constraints formally maximize the structural mutual information both edge-wise and local neighborhood-wise. Besides, we develop a general framework that incorporates the global representational mutual information, local representational mutual information, and sufficient structural information into the node representation. Essentially, our DGSI extends DGI and could capture more fine-grained semantic information as well as beneficial structural information in a self-supervised manner, thereby improving node representation and further boosting the learning performance. Extensive experiments on different types of datasets demonstrate the effectiveness and superiority of the proposed method.

源语言英语
主期刊名AAAI-23 Technical Tracks 4
编辑Brian Williams, Yiling Chen, Jennifer Neville
出版商AAAI press
4920-4928
页数9
ISBN(电子版)9781577358800
出版状态已出版 - 27 6月 2023
已对外发布
活动37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, 美国
期限: 7 2月 202314 2月 2023

出版系列

姓名Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
37

会议

会议37th AAAI Conference on Artificial Intelligence, AAAI 2023
国家/地区美国
Washington
时期7/02/2314/02/23

指纹

探究 'Deep Graph Structural Infomax' 的科研主题。它们共同构成独一无二的指纹。

引用此