TY - JOUR
T1 - Decoupling light- and oxygen-induced degradation mechanisms of Sn-Pb perovskites in all perovskite tandem solar cells
AU - Bai, Yang
AU - Tian, Ruijia
AU - Sun, Kexuan
AU - Liu, Chang
AU - Lang, Xiting
AU - Yang, Ming
AU - Meng, Yuanyuan
AU - Xiao, Chuanxiao
AU - Wang, Yaohua
AU - Lu, Xiaoyi
AU - Wang, Jingnan
AU - Pan, Haibin
AU - Song, Zhenhua
AU - Zhou, Shujing
AU - Ge, Ziyi
N1 - Publisher Copyright:
© 2024 The Royal Society of Chemistry.
PY - 2024
Y1 - 2024
N2 - Efficiencies of all-perovskite tandem solar cells are dominantly constrained by the challenges pertaining to defects and stability within tin-lead (Sn-Pb) perovskite sub-cells. On top of the well-studied oxygen oxidation, defects related to iodide and the consequent generation of I2 upon light illumination pose significant degradation risks, leading to Sn2+ → Sn4+ oxidation. To address this, we screen phenylhydrazine cation (PEH+)-based additives of varying polarities, which strongly coordinate with Sn for reinforcing the Sn-I bond, and interacting electrostatically with negatively charged defects (VSn, VFA, ISn, and I−i). The synergistic effects suppress the photo-induced formation of I2 and the subsequent oxidation of Sn-Pb perovskites, circumventing the stability concerns of narrow bandgap (NBG) perovskite solar cells (PSCs) under operational conditions. The reducing agent 2-mercaptobenzimidazole (MBI) was further introduced into the precursor solution, which not only demonstrates strong resistance to oxygen erosion, but also reduces the deep-level defect density of the Sn-Pb perovskites. Consequently, single-junction Sn-Pb cells achieve a champion efficiency of 23.0%. The enhanced light stability allows these cells to retain 89.4% of their initial efficiency after 400 hours of continuous operation, as assessed by tracking the maximum power point (MPP). We further integrated the Sn-Pb perovskite into a two-terminal (2T) monolithic all-perovskite tandem cell and achieved a PCE of 27.9% (27.2% certified). Meanwhile, the encapsulated tandem device maintained 90.3% of its initial PCE after 300 h through MPP tracking. The work offers new ideas for tackling the stability issues related to light-triggered oxidation.
AB - Efficiencies of all-perovskite tandem solar cells are dominantly constrained by the challenges pertaining to defects and stability within tin-lead (Sn-Pb) perovskite sub-cells. On top of the well-studied oxygen oxidation, defects related to iodide and the consequent generation of I2 upon light illumination pose significant degradation risks, leading to Sn2+ → Sn4+ oxidation. To address this, we screen phenylhydrazine cation (PEH+)-based additives of varying polarities, which strongly coordinate with Sn for reinforcing the Sn-I bond, and interacting electrostatically with negatively charged defects (VSn, VFA, ISn, and I−i). The synergistic effects suppress the photo-induced formation of I2 and the subsequent oxidation of Sn-Pb perovskites, circumventing the stability concerns of narrow bandgap (NBG) perovskite solar cells (PSCs) under operational conditions. The reducing agent 2-mercaptobenzimidazole (MBI) was further introduced into the precursor solution, which not only demonstrates strong resistance to oxygen erosion, but also reduces the deep-level defect density of the Sn-Pb perovskites. Consequently, single-junction Sn-Pb cells achieve a champion efficiency of 23.0%. The enhanced light stability allows these cells to retain 89.4% of their initial efficiency after 400 hours of continuous operation, as assessed by tracking the maximum power point (MPP). We further integrated the Sn-Pb perovskite into a two-terminal (2T) monolithic all-perovskite tandem cell and achieved a PCE of 27.9% (27.2% certified). Meanwhile, the encapsulated tandem device maintained 90.3% of its initial PCE after 300 h through MPP tracking. The work offers new ideas for tackling the stability issues related to light-triggered oxidation.
UR - http://www.scopus.com/inward/record.url?scp=85200416647&partnerID=8YFLogxK
U2 - 10.1039/d4ee02427c
DO - 10.1039/d4ee02427c
M3 - Article
AN - SCOPUS:85200416647
SN - 1754-5692
JO - Energy and Environmental Science
JF - Energy and Environmental Science
ER -