Decomposition-and-Fusion Network for HE-Stained Pathological Image Classification

Rui Yan, Jintao Li, S. Kevin Zhou, Zhilong Lv, Xueyuan Zhang, Xiaosong Rao, Chunhou Zheng, Fei Ren*, Fa Zhang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Building upon the clinical evidence supporting that decomposing a pathological image into different components can improve diagnostic value, in this paper we propose a Decomposition-and-Fusion Network (DFNet) for HE-stained pathological image classification. The medical goal of using HE-stained pathological images is to distinguish between nucleus, cytoplasm and extracellular matrix, thereby displaying the overall layouts of cells and tissues. We embed this most basic medical knowledge into a deep learning framework that decomposes a pathological image into cell nuclei and the remaining structures (that is, cytoplasm and extracellular matrix). With such decomposed pathological images, DFNet first extracts independent features using three independent CNN branches, and then gradually merges these features together for final classification. In this way, DFNet is able to learn more representative features with respect to different structures and hence improve the classification performance. Experimental results on two different datasets with various cancer types show that the DFNet achieves competitive performance.

源语言英语
主期刊名Intelligent Computing Theories and Application - 17th International Conference, ICIC 2021, Proceedings
编辑De-Shuang Huang, Kang-Hyun Jo, Jianqiang Li, Valeriya Gribova, Vitoantonio Bevilacqua
出版商Springer Science and Business Media Deutschland GmbH
198-207
页数10
ISBN(印刷版)9783030845315
DOI
出版状态已出版 - 2021
已对外发布
活动17th International Conference on Intelligent Computing, ICIC 2021 - Shenzhen, 中国
期限: 12 8月 202115 8月 2021

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12838 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议17th International Conference on Intelligent Computing, ICIC 2021
国家/地区中国
Shenzhen
时期12/08/2115/08/21

指纹

探究 'Decomposition-and-Fusion Network for HE-Stained Pathological Image Classification' 的科研主题。它们共同构成独一无二的指纹。

引用此

Yan, R., Li, J., Zhou, S. K., Lv, Z., Zhang, X., Rao, X., Zheng, C., Ren, F., & Zhang, F. (2021). Decomposition-and-Fusion Network for HE-Stained Pathological Image Classification. 在 D.-S. Huang, K.-H. Jo, J. Li, V. Gribova, & V. Bevilacqua (编辑), Intelligent Computing Theories and Application - 17th International Conference, ICIC 2021, Proceedings (页码 198-207). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 卷 12838 LNAI). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-84532-2_18