Decentralised multi-sensor target tracking with limited field of view via possibility theory

Jeremie Houssineau*, Chenbao Xue, Han Cai, Murat Uney, Emmanuel Delande

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Quantifying negative information in an efficient way is a challenging task, especially when this information has to be communicated on a network. In this article we leverage the unique properties offered by possibility theory to quantify and approximate the negative information arising in the context of tracking a target with a sensor that has a limited field of view. We also verify experimentally that the corresponding target tracking methodology can be applied in a decentralised manner to a sensor network, while maintaining a performance close to the idealised case where the initial location of the target is better-known.

源语言英语
主期刊名FUSION 2024 - 27th International Conference on Information Fusion
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9781737749769
DOI
出版状态已出版 - 2024
活动27th International Conference on Information Fusion, FUSION 2024 - Venice, 意大利
期限: 7 7月 202411 7月 2024

出版系列

姓名FUSION 2024 - 27th International Conference on Information Fusion

会议

会议27th International Conference on Information Fusion, FUSION 2024
国家/地区意大利
Venice
时期7/07/2411/07/24

指纹

探究 'Decentralised multi-sensor target tracking with limited field of view via possibility theory' 的科研主题。它们共同构成独一无二的指纹。

引用此