Database Meets Artificial Intelligence: A Survey (Extended Abstract)

Xuanhe Zhou*, Chengliang Chai, Guoliang Li, Ji Sun

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Database and Artificial Intelligence (AI) can benefit from each other. On one hand, AI can make database more intelligent (AI4DB). It is challenging for empirical database optimization techniques (e.g., configuration tuning, query optimization) to meet the high-performance requirement for large-scale database instances, various applications, diversified users. Learning-based techniques can alleviate this problem by exploring high-quality optimization strategies and reusing the historical data/models. On the other hand, database techniques can optimize AI models (DB4AI). AI is hard to deploy in real applications, because it requires developers to write complex codes and train complicated models. Database techniques can be used to reduce the complexity of using AI models, accelerate AI algorithms and provide AI capability inside databases. Thus, both DB4AI and AI4DB have been extensively studied recently.

源语言英语
主期刊名Proceedings - 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023
出版商IEEE Computer Society
3901-3902
页数2
ISBN(电子版)9798350322279
DOI
出版状态已出版 - 2023
已对外发布
活动39th IEEE International Conference on Data Engineering, ICDE 2023 - Anaheim, 美国
期限: 3 4月 20237 4月 2023

出版系列

姓名Proceedings - International Conference on Data Engineering
2023-April
ISSN(印刷版)1084-4627

会议

会议39th IEEE International Conference on Data Engineering, ICDE 2023
国家/地区美国
Anaheim
时期3/04/237/04/23

指纹

探究 'Database Meets Artificial Intelligence: A Survey (Extended Abstract)' 的科研主题。它们共同构成独一无二的指纹。

引用此