Data-Driven MPC for Linear Systems using Reinforcement Learning

Zhongqi Sun, Qian Wang, Junan Pan, Yuanqing Xia

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

This paper proposes a novel scheme to solve the optimal control problem for unknown linear systems in a data driven manner. The method doesn't require any prior knowledge of the system, and only utilizes past input-output trajectories to describe the system features implicitly and realize the prediction on the basis of behavioral systems theory. Meanwhile, we adopt reinforcement learning to update the terminal cost function online to ensure the closed-loop stability. The merit of the proposed scheme is the avoiding of the system identification process and the complex design process of terminal cost, terminal set and terminal controller in the standard MPC. We verify the performance of the algorithm by simulation.

源语言英语
主期刊名Proceeding - 2021 China Automation Congress, CAC 2021
出版商Institute of Electrical and Electronics Engineers Inc.
394-399
页数6
ISBN(电子版)9781665426473
DOI
出版状态已出版 - 2021
活动2021 China Automation Congress, CAC 2021 - Beijing, 中国
期限: 22 10月 202124 10月 2021

出版系列

姓名Proceeding - 2021 China Automation Congress, CAC 2021

会议

会议2021 China Automation Congress, CAC 2021
国家/地区中国
Beijing
时期22/10/2124/10/21

指纹

探究 'Data-Driven MPC for Linear Systems using Reinforcement Learning' 的科研主题。它们共同构成独一无二的指纹。

引用此