TY - GEN
T1 - Data-Driven Knowledge-Aware Inference of Private Information in Continuous Double Auctions
AU - Cui, Lvye
AU - Yu, Haoran
N1 - Publisher Copyright:
Copyright © 2024, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2024/3/25
Y1 - 2024/3/25
N2 - Inferring the private information of humans from their strategic behavioral data is crucial and challenging. The main approach is first obtaining human behavior functions (which map public information and human private information to behavior), enabling subsequent inference of private information from observed behavior. Most existing studies rely on strong equilibrium assumptions to obtain behavior functions. Our work focuses on continuous double auctions, where multiple traders with heterogeneous rationalities and beliefs dynamically trade commodities and deriving equilibria is generally intractable. We develop a knowledge-aware machine learning-based framework to infer each trader's private cost vectors for producing different units of its commodity. Our key idea is to learn behavior functions by incorporating the statistical knowledge about private costs given the observed trader asking behavior across the population. Specifically, we first use a neural network to characterize each trader's behavior function. Second, we leverage the statistical knowledge to derive the posterior distribution of each trader's private costs given its observed asks. Third, through designing a novel loss function, we utilize the knowledge-based posterior distributions to guide the learning of the neural network. We conduct extensive experiments on a large experimental dataset, and demonstrate the superior performance of our framework over baselines in inferring the private information of humans.
AB - Inferring the private information of humans from their strategic behavioral data is crucial and challenging. The main approach is first obtaining human behavior functions (which map public information and human private information to behavior), enabling subsequent inference of private information from observed behavior. Most existing studies rely on strong equilibrium assumptions to obtain behavior functions. Our work focuses on continuous double auctions, where multiple traders with heterogeneous rationalities and beliefs dynamically trade commodities and deriving equilibria is generally intractable. We develop a knowledge-aware machine learning-based framework to infer each trader's private cost vectors for producing different units of its commodity. Our key idea is to learn behavior functions by incorporating the statistical knowledge about private costs given the observed trader asking behavior across the population. Specifically, we first use a neural network to characterize each trader's behavior function. Second, we leverage the statistical knowledge to derive the posterior distribution of each trader's private costs given its observed asks. Third, through designing a novel loss function, we utilize the knowledge-based posterior distributions to guide the learning of the neural network. We conduct extensive experiments on a large experimental dataset, and demonstrate the superior performance of our framework over baselines in inferring the private information of humans.
UR - http://www.scopus.com/inward/record.url?scp=85189349661&partnerID=8YFLogxK
U2 - 10.1609/aaai.v38i9.28864
DO - 10.1609/aaai.v38i9.28864
M3 - Conference contribution
AN - SCOPUS:85189349661
T3 - Proceedings of the AAAI Conference on Artificial Intelligence
SP - 10012
EP - 10020
BT - Technical Tracks 14
A2 - Wooldridge, Michael
A2 - Dy, Jennifer
A2 - Natarajan, Sriraam
PB - Association for the Advancement of Artificial Intelligence
T2 - 38th AAAI Conference on Artificial Intelligence, AAAI 2024
Y2 - 20 February 2024 through 27 February 2024
ER -