Cycle life prediction of lithium ion battery based on DE-BP neural network

Zhao Yao, Shun Lu*, Yingshun Li, Xiaojian Yi

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

Aiming at the low prediction accuracy of current lithium-ion battery cycle, this paper proposes a model based on differential evolution algorithm (DE) and BP neural network fusion. BP neural network is used to predict the cycle life of lithium-ion battery. The DE algorithm is used to optimize the initial weight and threshold of BP neural network, which reduces the number of iterations of neural network and accelerates the convergence speed. The prediction results show that the prediction model has higher prediction accuracy, effectively improves the convergence speed of BP neural network, and meets the characteristics of battery operation, which is of great significance for improving the timeliness and accuracy of battery life assessment.

源语言英语
主期刊名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
编辑Chuan Li, Shaohui Zhang, Jianyu Long, Diego Cabrera, Ping Ding
出版商Institute of Electrical and Electronics Engineers Inc.
137-141
页数5
ISBN(电子版)9781728101996
DOI
出版状态已出版 - 8月 2019
活动2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019 - Beijing, 中国
期限: 15 8月 201917 8月 2019

出版系列

姓名Proceedings - 2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019

会议

会议2019 International Conference on Sensing, Diagnostics, Prognostics, and Control, SDPC 2019
国家/地区中国
Beijing
时期15/08/1917/08/19

指纹

探究 'Cycle life prediction of lithium ion battery based on DE-BP neural network' 的科研主题。它们共同构成独一无二的指纹。

引用此