CSAM: A Channel and Spatial Attention Mechanism for Impervious Surface Extraction in Difficult Areas

Fangyuan Zhao, Xiaohua Wan*, Sijia Li, Zhongchang Sun, Wenjing Zhang, Dehui Qiu, Fa Zhang, Xinyu Liu, Guangming Tan

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Impervious surface extraction from remote sensing images has become a promising technology to measure the urban ecological environment and monitor human activity. However, due to the complex characteristics of impervious landscapes, most researches on impervious surface extraction hardly identify the scattered and small objects especially in difficult areas, which severely affect the accuracy of mapping impervious surface. In this work, we propose a channel and spatial attention mechanism (CSAM) to extract impervious surface in difficult areas, which includes a channel attention module to learn the relationship in the multi-channel remote sensing images and a spatial attention module to capture the features of the inconspicuous objects. Experiments with the Sentinel-2 dataset in South Africa demonstrate that CSAM can outperform the state-of-the-art methods.

源语言英语
主期刊名IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium
出版商Institute of Electrical and Electronics Engineers Inc.
1360-1363
页数4
ISBN(电子版)9781665427920
DOI
出版状态已出版 - 2022
已对外发布
活动2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022 - Kuala Lumpur, 马来西亚
期限: 17 7月 202222 7月 2022

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2022-July

会议

会议2022 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2022
国家/地区马来西亚
Kuala Lumpur
时期17/07/2222/07/22

指纹

探究 'CSAM: A Channel and Spatial Attention Mechanism for Impervious Surface Extraction in Difficult Areas' 的科研主题。它们共同构成独一无二的指纹。

引用此