摘要
The trade-offs between photoelectrode efficiency and stability significantly hinder the practical application of silicon-based photoelectrochemical devices. Here, we report a facile approach to decouple the trade-offs of silicon-based photocathodes by employing crystalline TiO2 with graded oxygen defects as protection layer. The crystalline protection layer provides high-density structure and enhances stability, and at the same time oxygen defects allow the carrier transport with low resistance as required for high efficiency. The silicon-based photocathode with black TiO2 shows a limiting current density of ~35.3 mA cm−2 and durability of over 100 h at 10 mA cm−2 in 1.0 M NaOH electrolyte, while none of photoelectrochemical behavior is observed in crystalline TiO2 protection layer. These findings have significant suggestions for further development of silicon-based, III–V compounds and other photoelectrodes and offer the possibility for achieving highly efficient and durable photoelectrochemical devices.
源语言 | 英语 |
---|---|
文章编号 | 3572 |
期刊 | Nature Communications |
卷 | 9 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 1 12月 2018 |
已对外发布 | 是 |