Crossmodal Transformer on Multi-Physical Signals for Personalised Daily Mental Health Prediction

Meishu Song, Zijiang Yang, Andreas Triantafyllopoulos, Toru Nakamura, Yongxin Zhang, Zhao Ren, Hiroki Takeuchi, Akifumi Kishi, Tetsuro Ishizawa, Kazuhiro Yoshiuchi, Haojie Zhang, Kun Qian, Bin Hu, Bjorn W. Schuller, Yoshiharu Yamamoto*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 2
  • Captures
    • Readers: 14
see details

摘要

The rapid advancement of wearable sensors and machine learning technologies has opened new avenues for mental health monitoring. Despite these advancements, conventional approaches often fail to provide an accurate and personalised understanding of an individual's multi-dimensional emotional state. This paper introduces a novel approach for enhanced daily mental health prediction, focusing on nine distinct emotional states. Our method employs a personalised crossmodal transformer architecture that effectively integrates ZCM (Zero Crossing Mode) and PIM (Proportional Integration Mode) physical signals obtained from piezoelectric accelerometers worn on the non-dominant wrist. Utilising this personalised crossmodal transformer model, our approach adaptively focuses on the most pertinent features across these diverse physical signals, thereby offering a more nuanced and individualised assessment of an individual's emotional state. Our experiments show a considerable improvement in performance, achieving a Concordance Correlation Coefficient (CCC) of 0.475 over a baseline of 0.281.

源语言英语
主期刊名Proceedings - 23rd IEEE International Conference on Data Mining Workshops, ICDMW 2023
编辑Jihe Wang, Yi He, Thang N. Dinh, Christan Grant, Meikang Qiu, Witold Pedrycz
出版商IEEE Computer Society
1299-1305
页数7
ISBN(电子版)9798350381641
DOI
出版状态已出版 - 2023
活动23rd IEEE International Conference on Data Mining Workshops, ICDMW 2023 - Shanghai, 中国
期限: 1 12月 20234 12月 2023

出版系列

姓名IEEE International Conference on Data Mining Workshops, ICDMW
ISSN(印刷版)2375-9232
ISSN(电子版)2375-9259

会议

会议23rd IEEE International Conference on Data Mining Workshops, ICDMW 2023
国家/地区中国
Shanghai
时期1/12/234/12/23

指纹

探究 'Crossmodal Transformer on Multi-Physical Signals for Personalised Daily Mental Health Prediction' 的科研主题。它们共同构成独一无二的指纹。

引用此

Song, M., Yang, Z., Triantafyllopoulos, A., Nakamura, T., Zhang, Y., Ren, Z., Takeuchi, H., Kishi, A., Ishizawa, T., Yoshiuchi, K., Zhang, H., Qian, K., Hu, B., Schuller, B. W., & Yamamoto, Y. (2023). Crossmodal Transformer on Multi-Physical Signals for Personalised Daily Mental Health Prediction. 在 J. Wang, Y. He, T. N. Dinh, C. Grant, M. Qiu, & W. Pedrycz (编辑), Proceedings - 23rd IEEE International Conference on Data Mining Workshops, ICDMW 2023 (页码 1299-1305). (IEEE International Conference on Data Mining Workshops, ICDMW). IEEE Computer Society. https://doi.org/10.1109/ICDMW60847.2023.00167