TY - JOUR
T1 - COVID-19 and Computer Audition
T2 - An Overview on What Speech & Sound Analysis Could Contribute in the SARS-CoV-2 Corona Crisis
AU - Schuller, Björn W.
AU - Schuller, Dagmar M.
AU - Qian, Kun
AU - Liu, Juan
AU - Zheng, Huaiyuan
AU - Li, Xiao
N1 - Publisher Copyright:
Copyright © 2021 Schuller, Schuller, Qian, Liu, Zheng and Li.
PY - 2021/3/29
Y1 - 2021/3/29
N2 - At the time of writing this article, the world population is suffering from more than 2 million registered COVID-19 disease epidemic-induced deaths since the outbreak of the corona virus, which is now officially known as SARS-CoV-2. However, tremendous efforts have been made worldwide to counter-steer and control the epidemic by now labelled as pandemic. In this contribution, we provide an overview on the potential for computer audition (CA), i.e., the usage of speech and sound analysis by artificial intelligence to help in this scenario. We first survey which types of related or contextually significant phenomena can be automatically assessed from speech or sound. These include the automatic recognition and monitoring of COVID-19 directly or its symptoms such as breathing, dry, and wet coughing or sneezing sounds, speech under cold, eating behaviour, sleepiness, or pain to name but a few. Then, we consider potential use-cases for exploitation. These include risk assessment and diagnosis based on symptom histograms and their development over time, as well as monitoring of spread, social distancing and its effects, treatment and recovery, and patient well-being. We quickly guide further through challenges that need to be faced for real-life usage and limitations also in comparison with non-audio solutions. We come to the conclusion that CA appears ready for implementation of (pre-)diagnosis and monitoring tools, and more generally provides rich and significant, yet so far untapped potential in the fight against COVID-19 spread.
AB - At the time of writing this article, the world population is suffering from more than 2 million registered COVID-19 disease epidemic-induced deaths since the outbreak of the corona virus, which is now officially known as SARS-CoV-2. However, tremendous efforts have been made worldwide to counter-steer and control the epidemic by now labelled as pandemic. In this contribution, we provide an overview on the potential for computer audition (CA), i.e., the usage of speech and sound analysis by artificial intelligence to help in this scenario. We first survey which types of related or contextually significant phenomena can be automatically assessed from speech or sound. These include the automatic recognition and monitoring of COVID-19 directly or its symptoms such as breathing, dry, and wet coughing or sneezing sounds, speech under cold, eating behaviour, sleepiness, or pain to name but a few. Then, we consider potential use-cases for exploitation. These include risk assessment and diagnosis based on symptom histograms and their development over time, as well as monitoring of spread, social distancing and its effects, treatment and recovery, and patient well-being. We quickly guide further through challenges that need to be faced for real-life usage and limitations also in comparison with non-audio solutions. We come to the conclusion that CA appears ready for implementation of (pre-)diagnosis and monitoring tools, and more generally provides rich and significant, yet so far untapped potential in the fight against COVID-19 spread.
KW - COVID-19
KW - SARS-CoV-2
KW - computational paralinguistics
KW - computer audition
KW - corona virus
KW - machine listening
UR - http://www.scopus.com/inward/record.url?scp=85144920732&partnerID=8YFLogxK
U2 - 10.3389/fdgth.2021.564906
DO - 10.3389/fdgth.2021.564906
M3 - Short survey
AN - SCOPUS:85144920732
SN - 2673-253X
VL - 3
JO - Frontiers in Digital Health
JF - Frontiers in Digital Health
M1 - 564906
ER -