TY - JOUR
T1 - Covalent metal–organic porous polymer on ZIF-67 realize anti-UV and highly stressed flame retardant epoxy composites
AU - Cao, Jin
AU - Chen, Shangxian
AU - Han, Zhengde
AU - Pan, Ye Tang
AU - Lin, Yichao
AU - Wang, Wei
AU - Yang, Rongjie
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/12/1
Y1 - 2024/12/1
N2 - Ferrocene (Fc) and metal–organic frameworks (MOFs) are established as effective functional additives in polymer composites, known for their synergistic effects. However, simple physical mixing does not fully harness their potential. To optimize their performance, we developed a method to graft ferrocene onto zeolitic imidazolate frameworks (ZIFs) via a Schiff base structure, followed by constructing a ferrocene-based covalent metal–organic porous polymer (CMOPP) network using Friedel-Crafts alkylation. This approach addresses the mesoporous structure limitation in ZIFs. During this process, the imidazole ligands are etched, yielding a yolk-shell structured, hierarchically nanoporous flame retardant. The synergy between ferrocene and ZIF significantly enhances the UV protection of epoxy resin, with a 99.1% reduction in UV transmittance. Additionally, ferrocene improves the filler-matrix compatibility, increasing tensile strength by 15.1%. This combination of flame-retardant elements and the porous structure's adsorption capacity imparts exceptional flame retardancy and smoke suppression to the epoxy resin, evidenced by a Limiting Oxygen Index of 28.3% and a V-0 rating in the UL-94 test. Notable reductions include 56.5% in peak heat release rate, 55.1% in peak smoke production rate, and 71.6% in peak carbon monoxide production. This work introduces a novel strategy for designing high-performance multifunctional flame retardants.
AB - Ferrocene (Fc) and metal–organic frameworks (MOFs) are established as effective functional additives in polymer composites, known for their synergistic effects. However, simple physical mixing does not fully harness their potential. To optimize their performance, we developed a method to graft ferrocene onto zeolitic imidazolate frameworks (ZIFs) via a Schiff base structure, followed by constructing a ferrocene-based covalent metal–organic porous polymer (CMOPP) network using Friedel-Crafts alkylation. This approach addresses the mesoporous structure limitation in ZIFs. During this process, the imidazole ligands are etched, yielding a yolk-shell structured, hierarchically nanoporous flame retardant. The synergy between ferrocene and ZIF significantly enhances the UV protection of epoxy resin, with a 99.1% reduction in UV transmittance. Additionally, ferrocene improves the filler-matrix compatibility, increasing tensile strength by 15.1%. This combination of flame-retardant elements and the porous structure's adsorption capacity imparts exceptional flame retardancy and smoke suppression to the epoxy resin, evidenced by a Limiting Oxygen Index of 28.3% and a V-0 rating in the UL-94 test. Notable reductions include 56.5% in peak heat release rate, 55.1% in peak smoke production rate, and 71.6% in peak carbon monoxide production. This work introduces a novel strategy for designing high-performance multifunctional flame retardants.
KW - Covalent metal–organic porous polymer
KW - Epoxy composites
KW - Ferrocene
KW - Metal-organic frameworks
UR - http://www.scopus.com/inward/record.url?scp=85209758949&partnerID=8YFLogxK
U2 - 10.1016/j.cej.2024.157758
DO - 10.1016/j.cej.2024.157758
M3 - Article
AN - SCOPUS:85209758949
SN - 1385-8947
VL - 501
JO - Chemical Engineering Journal
JF - Chemical Engineering Journal
M1 - 157758
ER -